ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Homologies  (1)
  • Horizontal gene transfer  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 21 (1985), S. 112-125 
    ISSN: 1432-1432
    Keywords: Amino acid sequence alignment ; Tyrosine kinases ; Globins ; Homologies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We examined two extensive families of protein sequences using four different alignment schemes that employ various degrees of “weighting” in order to determine which approach is most sensitive in establishing relationships. All alignments used a similarity approach based on a general algorithm devised by Needleman and Wunsch. The approaches included a simple program, UM (unitary matrix), whereby only identities are scored; a scheme in which the genetic code is used as a basis for weighting (GC); another that employs a matrix based on structural similarity of amino acids taken together with the genetic basis of mutation (SG); and a fourth that uses the empirical log-odds matrix (LOM) developed by Dayhoff on the basis of observed amino acid replacements. The two sequence families examined were (a) nine different globins and (b) nine different tyrosine kinase-like proteins. It was assumed a priori that all members of a family share common ancestry. In cases where two sequences were more than 30% identical, alignments by all four methods were almost always the same. In cases where the percentage identity was less than 20%, however, there were often significant differences in the alignments. On the average, the Dayhoff LOM approach was the most effective in verifying distant relationships, as judged by an empirical “jumbling test.” This was not universally the case, however, and in some instances the simple UM was actually as good or better. Trees constructed on the basis of the various alignments differed with regard to their limb lengths, but had essentially the same branching orders. We suggest some reasons for the different effectivenesses of the four approaches in the two different sequence settings, and offer some rules of thumb for assessing the significance of sequence relationships.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 31 (1990), S. 383-388 
    ISSN: 1432-1432
    Keywords: Horizontal gene transfer ; Prokaryote-eukaryote divergence ; Glyceraldehyde-3-phosphate dehydrogenase genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Naturally occurring horizontal gene transfers between nonviral organisms are difficult to prove. Only with the availability of sequence data from a wide variety of organisms can a convincing case be made. In the case of putative gene transfers between prokaryotes and eukaryotes, the minimum requirements for inferring such an event include (1) sequences of the transferred gene or its product from several appropriately divergent eukaryotes and several prokaryotes, and (2) a similar set of sequences from the same (or closely related organisms) for another gene or genes. Given these criteria, we believe that a strong case can be made forEscherichia coli having acquired a second glyceraldehyde-3-phosphate dehydrogenase gene from some eukaryotic host. Ancillary observations on the general rate of change and the time of the prokaryote-eukaryote divergence support the notion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...