ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-12
    Description: In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker's yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paddon, C J -- Westfall, P J -- Pitera, D J -- Benjamin, K -- Fisher, K -- McPhee, D -- Leavell, M D -- Tai, A -- Main, A -- Eng, D -- Polichuk, D R -- Teoh, K H -- Reed, D W -- Treynor, T -- Lenihan, J -- Fleck, M -- Bajad, S -- Dang, G -- Dengrove, D -- Diola, D -- Dorin, G -- Ellens, K W -- Fickes, S -- Galazzo, J -- Gaucher, S P -- Geistlinger, T -- Henry, R -- Hepp, M -- Horning, T -- Iqbal, T -- Jiang, H -- Kizer, L -- Lieu, B -- Melis, D -- Moss, N -- Regentin, R -- Secrest, S -- Tsuruta, H -- Vazquez, R -- Westblade, L F -- Xu, L -- Yu, M -- Zhang, Y -- Zhao, L -- Lievense, J -- Covello, P S -- Keasling, J D -- Reiling, K K -- Renninger, N S -- Newman, J D -- England -- Nature. 2013 Apr 25;496(7446):528-32. doi: 10.1038/nature12051. Epub 2013 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Amyris, Inc., 5885 Hollis Street, Suite 100, Emeryville, California 94608, USA. paddon@amyris.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23575629" target="_blank"〉PubMed〈/a〉
    Keywords: Antimalarials/economics/isolation & purification/metabolism/supply & distribution ; Artemisinins/chemistry/economics/isolation & purification/*metabolism/*supply & ; distribution ; *Biosynthetic Pathways ; Biotechnology ; Fermentation ; Genetic Engineering ; Malaria, Falciparum/drug therapy ; Molecular Sequence Data ; Saccharomyces cerevisiae/classification/genetics/growth & development/*metabolism ; Singlet Oxygen/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 122 (2000), S. 574-581 
    ISSN: 1432-1939
    Keywords: Key words Lizards ; Ticks ; Home range ; Sprint speed ; Parasite-host interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Populations of the Australian sleepy lizard, Tiliqua rugosa, near Mt. Mary, South Australia carry natural infestations of two tick species Aponomma hydrosauri and Amblyomma limbatum. In field experiments at two sites, 18 km apart, lizards with experimentally increased tick loads had smaller home ranges, moved shorter distances in a day, and were found basking more but moving less often than lizards from which ticks were experimentally removed. The results were consistent for adult lizards in two years, and for sub-adults in a third year. Laboratory trials showed that juvenile lizards that had tick infestations had lower sprint speeds than uninfested siblings, and that adults with tick infestations had less endurance than those that were uninfested. The results contrast with those of a previous survey that showed that lizards with high tick loads had greater body size and remained longer at a site, but indicate that there may be a balance, for lizards, between the fitness advantages in occupying habitats with high-quality resources, and the costs from parasites that also prefer those habitats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...