ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Holocene  (2)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2021-09-29
    Description: Bulk sediment δ15N records from the eastern tropical Pacific (ETP) extending back to the last ice age most often show low glacial δ15N, then a deglacial δ15N maximum, followed by a gradual decline to a late Holocene δ15N that is typically higher than that of the Last Glacial Maximum (LGM). The lower δ15N of the LGM has been interpreted to reflect an ice age reduction in water column denitrification. We report foraminifera shell‐bound nitrogen isotope (FB‐δ15N) measurements for the two species Neogloboquadrina dutertrei and Neogloboquadrina incompta over the last 35 ka in two sediment cores from the eastern equatorial Pacific (EEP), both of which have the typical LGM‐to‐Holocene increase in bulk sediment δ15N. FB‐δ15N contrasts with bulk sediment δ15N by not indicating a lower δ15N during the LGM. Instead, the FB‐δ15N records are dominated by a deglacial δ15N maximum, with comparable LGM and Holocene values. The lower LGM δ15N of the bulk sediment records may be an artifact, possibly related to greater exogenous N inputs and/or weaker sedimentary diagenesis during the LGM. The new data raise the possibility that the previously inferred glacial reduction in ETP water column denitrification was incorrect. A review of reconstructed ice age conditions and geochemical box model output provides mechanistic support for this possibility. However, equatorial ocean circulation and nitrate‐rich surface water overlying both core sites allow for other possible interpretations, calling for replication at non‐equatorial ETP sites.
    Description: Plain Language Summary: The 15N/14N ratio of sediments provides information on the past marine nitrogen (N) cycle through the production of N‐bearing organic matter in the surface ocean and its burial in the sediments. Previous measurements of the sedimentary 15N/14N ratio in the eastern equatorial Pacific (EEP) indicate lower values during the last ice age compared to the Holocene (the current warm period). This has been interpreted to reflect an ice age reduction in the oceanic N loss process known as “denitrification” that occurs between 200 and 500 m depth in this region of the ocean. However, the 15N/14N ratio measured on the whole sediment can be biased by biological and chemical processes in the sediments and by foreign N inputs. To avoid these complications, we measured the 15N/14N ratio of organic N embedded in the calcite shell of unicellular zooplankton (foraminifera) in two sediment cores from the EEP. We found similar foraminifera‐bound 15N/14N ratios during the last ice and the Holocene. This may argue against the long‐held interpretation of a reduction in denitrification during the last ice age. However, the oceanographic setting of these equatorial cores leaves open alternative interpretations, calling for further work at other eastern tropical Pacific sites.
    Description: Key Points: Foraminifera‐bound δ15N was similar during the last ice age and the Holocene in the eastern equatorial Pacific, unlike bulk sedimentary δ15N. Bulk sediment δ15N is likely biased to lower ice age values by foreign N inputs and weaker sedimentary diagenesis. The foraminifera‐bound δ15N data may reflect that water column denitrification was not reduced during the last glacial period.
    Description: Swiss National Science Foundation
    Description: US National Science Foundation
    Description: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung http://dx.doi.org/10.13039/501100001711
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Keywords: 551.9 ; Pacific Ocean ; nitrogen isotopes ; denitrification ; suboxia ; Last Glacial Maximum ; Holocene
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.
    Description: 230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (〉1,000 m water depth).
    Description: We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791.
    Keywords: Thorium ; Sediment flux ; Holocene ; LGM ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...