ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Herbivory  (1)
  • Key words Omnivory  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 28 (1999), S. 212-218 
    ISSN: 1432-0789
    Keywords: Key words Omnivory ; Soil food web ; Energy channel ; Nematode ; Microbial production
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  To study the effects of omnivory on the structure and function of soil food webs and on the control of trophic-level biomasses in soil, two food webs were established in microcosms. The first one contained fungi, bacteria, a fungivorous nematode (Aphelenchoides saprophilus) and a bacterivorous nematode (Caenorhabditis elegans), and the second one fungi, bacteria, the fungivore and an omnivorous nematode (Mesodiplogaster sp.) feeding on both bacteria and the fungivore. Half of the replicates of each food web received additional glucose. The microcosms were sampled destructively at 5, 9, 13 and 19 weeks to estimate the biomass of microbes and nematodes and the soil NH4 +-N concentration. The evolution of CO2 was measured to assess microbial respiration. Microbial respiration was increased and soil NH4 +-N concentration decreased by the addition of glucose, whereas neither was affected by the food-web structure. Supplementary energy increased the biomass of fungi and the fungivore, but decreased the biomass of bacteria, the bacterivore and the omnivore. The omnivore achieved greater biomass than the bacterivore and reduced the bacterial biomass less than the bacterivore. The biomass of the fungivore was smaller in the presence of the omnivore than in the presence of the bacterivore at three sampling occasions. Fungal biomass was not affected by food-web structure. The results show that the effects of the omnivore were restricted to its resources, whereas more remote organisms and soil processes were not substantially influenced. The results also indicate that the presence of an omnivore does not necessarily alter the control of populations as compared with a food web containing distinct trophic levels, and that the fungal and bacterial channels may respond differently to changes in energy supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Nuphar lutea ; Galerucella nymphaeae ; Herbivory ; Nitrogen dynamics ; Small aquatic systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The grazing effects of the waterlily beetle Galerucella nymphaeae on Nuphar lutea stands were studied in three ponds in Central Finland. Production of floating leaves of N. lutea and growth in the G. nymphaeae population were investigated in the ponds and bioenergetics of the beetle larvae in the laboratory. Combination of field and laboratory data enabled estimation of the effect of the beetle on the production of floating leaves of N. lutea and the consequences of grazing for the input of detritus from Nuphar into the ponds. Adults and larvae of G. nymphaeae consumed 3.0–6.1% of the net annual floating leaf production during the growing period. In addition to consumption losses, feeding accelerated the degradation rate of the leaves. This was associated with an increased flow of detrital material of Nuphar origin, and also with increased production of floating leaves in the ponds. These increments were estimated to be up to 3 times greater in the presence of grazing than without it. Grazing by G. nymphaeae releases substantial amounts of carbon and nitrogen bound in Nuphar, particularly in ponds with a dense Nuphar vegetation. It is hypothesized that feeding by this beetle may markedly affect the structure and functioning of such small aquatic systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...