ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 169 (1998), S. 469-482 
    ISSN: 1432-072X
    Keywords: Key words Cyanobacteria ; Halophiles ; Halotolerance ; Hypersaline environments ; Phylogeny ; Taxonomy ; Microbial mats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the morphology, physiology, and 16S rRNA gene sequences of three culture collection strains and of ten novel isolates of unicellular cyanobacteria from hypersaline environments. The strains were morphologically diverse, with average cell widths ranging from 2.8 to 10.3 μm. There were single-celled, colonial, and baeocyte-forming strains. However, morphological traits were markedly variable with culture conditions. In contrast, all strains displayed extreme halotolerance (growing close to optimally at above 12% salinity); all were obligately marine, euryhaline, and moderately thermophilic; and all shared a suite of chemotaxonomic markers including phycobilins, carotenoids, and mycosporine-like amino acids. 16S rRNA gene sequence analysis indicated that the strains were related to each other. Sequence similarity analysis placed the strains in a monophyletic cluster (which we named the Halothece cluster) apart from all cultured or uncultured, not extremely halotolerant cyanobacteria whose 16S rRNA gene sequences are available in public nucleotide sequence databases. This represents the first case in which a phylogenetically coherent group of cyanobacteria can be defined on the basis of physiology. The Halothece cluster contained two subclusters that may be divergent at the generic level, one encompassing 12 strains (spanning 5% 16S rRNA gene sequence divergence and named the Euhalothece subcluster), and a single deep-branching isolate. Phenotypic characterization of the isolates, including morphological, physiological, and chemotaxonomic traits, did not distinguish these subclusters and only weakly suggested the existence of two separate clades, one encompassing strains of small cell size (cell width 〈 5 m) and another one encompassing strains of larger cell size.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 401 (1999), S. 199-206 
    ISSN: 1573-5117
    Keywords: hypersaline ; microbial mat ; cyanobacteria ; diatom ; microbial richness ; biodiversity ; 16S rRNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We characterized the richness of benthic cyanobacteria and diatoms in a salina system using traditional and molecular biological methods. After determining the different morphotypes and 16S rRNA genes present in various localities within this hypersaline system, an analysis of the increase of organismal richness as a function of numbers of samples considered was carried out. We found that the spatial scales of sampling yielding significant increases in cumulative richness were those at which significant variations in environmental parameters (salinity, vertical microgradients) are known to exist, indicating that the presence of environmental gradients contributes to increased biodiversity. Additionally, we could use this type of cumulative analysis for the estimation, through asymptotic extrapolation, of the total richness of oxygenic phototrophs present in the entire salina system, and for the estimation of the average degree of dissemination of community members within the system. We found interesting differences between analyses based on morphotypes or 16S rRNA genes. The cumulative number of rRNA gene sequences exceeded that of morphotypes by more than two-fold. This indicates that many organisms possessing distinct 16S rRNA gene sequences could not be distinguished on the basis of morphology. Thus, some of the apparently widely distributed morphotypes may in fact conceal several ecologically independent genotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...