ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • HABs  (1)
  • MFS  (1)
  • 1
    ISSN: 0749-503X
    Keywords: drug resistance ; transport ; yeast ; MFS ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Screening of the complete genome sequence from the yeast Saccharomyces cerevisiae reveals that 28 open reading frames (ORFs) are homologous to each other and to established bacterial members of the drug-resistant subfamily of the major facilitator superfamily. The phylogenesis of these protein sequences shows that they fall into three major clusters. Cluster I contains 12 ORFs, cluster II contains ten ORFs and cluster III contains six ORFs. Hydropathy analyses indicate that in clusters II and III ORFs, 14 transmembrane spans are predicted whereas only 12 transmembrane spans are predicted in cluster I ORFs.Three ORFs that have known functions as multidrug-resistance pumps in other yeast species such as Schizosaccharomyces pombe (CAR1), Candida albicans (BMRP) or C. maltosa (CYHR), also fall into cluster I. Two S. cerevisiae ORFs of known multidrug-resistance function (ATR1, SGE1) fall into cluster II. Cluster III consists exclusively of ORFs of unknown function but binary sequence comparisons show homology to ORFs from cluster II.Analysis of the multiple alignment for these proteins leads to the identification of characteristic signature sequences for each of the three clusters. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 108 (2011): 4352-4357, doi:10.1073/pnas.1016106108.
    Description: Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements demonstrated that the harmful 43 Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the first HAB genome (A. anophagefferens) and compared its gene complement to those of six competing phytoplankton species identified via metaproteomics. Using an ecogenomic approach, we specifically focused on the gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 mbp) and more genes involved in light harvesting, organic carbon and nitrogen utilization, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus has facilitated the proliferation of this and potentially other HABs.
    Description: Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Efforts were also supported by awards from New York Sea Grant to Stony Brook University, National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research award #NA09NOS4780206 to Woods Hole Oceanographic Institution, NIH grant GM061603 to Harvard University, and NSF award IOS-0841918 to The University of Tennessee.
    Keywords: Harmful algal blooms ; HABs ; Genome sequence ; Ecogenomics ; Metaproteomics ; Eutrophication ; Aureococcus anophagefferens
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...