ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 129 (1981), S. 49-52 
    ISSN: 1432-072X
    Keywords: Role of H2S ; Mercury resistance ; Plasmid mediated ; Methylmercury-decomposing activity ; H2S-forming ability ; Inactivation of inorganic mercury ; Bacterial conjugation ; Clostridium cochlearium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mercury resistance of Clostridium cochlearium T-2P was found to be controlled by a different mechanism from those reported so far since no mercury-reducing activity was detected in this strain. The H2S generating ability as well as the demethylating activity of this bacterium was eliminated by the treatment with acridine dye and recovered by the conjugation of the cured strain with the parent strain. In addition, the strain which lost their abilities to generate H2S and to decompose methylmercury, showed higher sensitivity to mercurials than the parent strain. From these results, the genes conferring both the activities seemed to reside on the plasmid and the mechanism of mercury resistance was probably based on a detoxification mechanism involving methylmercury decomposition and inactivation of the inorganic mercury with H2S.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 131 (1982), S. 176-177 
    ISSN: 1432-072X
    Keywords: Methylation of mercury ; Detoxication of mercury ; Mercury sensitivity ; Vitamin B12 auxotroph ; Methylcobalamin ; Clostridium cochlearium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A vitamin B12 requiring strain was isolated fromChlostridium cochlearium T-2 C which is known to synthesize various types of vitamin B12 including methylcobalamin and has an ability to methylate inorganic mercury. The vitamin B12 auxotroph lacking the mercury-methylating activity showed higher sensitivity to inorganic mercury than its original strain, while the sensitivity of both strains to methylmercury was relatively low and essentially the same. These data seem to present affirmative evidence to postulate the physiological role of methylcobalamin-dependent methylation of mercury to be a process of detoxication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...