ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1327
    Keywords: Key words Alkane hydroxylation ; C ; H activation ; Concerted mechanism ; Cytochrome P450 ; Methane monooxygenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  A two-step concerted mechanism for the conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO) is discussed. We propose that the enzymatic reaction mechanism is essentially the same as that of the gas-phase methane-methanol conversion by the bare FeO+ complex. In the initial stage of our mechanism, the ferryl (Fe—O) "iron" active site of intermediate Q and substrate methane come into contact to form the initial Q (CH4) complex with an OFe—CH4 bond. The C—H bonds of methane are significantly weakened by the formation of a five-coordinate carbon species, through orbital interactions between a C 3v - or D 2d -distorted methane and the Fe—O active site. The important transition state for an H atom abstraction exhibits a four-centered structure. The generated intermediate involves an HO—Fe—CH3 moiety, and it is then converted into the final product complex including methanol as a ligand through a methyl migration that occurs via a three-centered transition state. The two-step concerted mechanism is consistent with recent experiments on regioselectivity of enzyme-catalyzed alkane hydroxylations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...