ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-09
    Description: Abstract
    Description: The Global Gravity-based Groundwater Product (G3P) provides groundwater storage anomalies (GWSA) from a cross-cutting combination of GRACE/GRACE-FO-based terrestrial water storage (TWS) and storage compartments of the water cycle (WSCs) that are part of the Copernicus portfolio. The data set comprises gridded anomalies of groundwater, TWS, and the WSCs glacier, snow, soil moisture and surface water bodies plus layers containing uncertainty information for the individual data products. All WSCs are spatially filtered with a Gaussian filter to be compatible with TWS. Spatial coverage is global, except Greenland and Antarctica, with 0.5-degree resolution. Temporal coverage is from April 2002 to December 2020 with monthly temporal resolution. Gridded data sets are available as NetCDF files containing variables for the parameter value as anomaly in mm equivalent water height and the parameter’s uncertainty as mm equivalent water height. The latest version of the data is visualized at the GravIS portal: http://gravis.gfz-potsdam.de/gws. From GravIS, the data is also available as area averages for several large river basins and aquifers, as well as for climatically similar regions. G3P was funded by the EU Horizon 2020 programme in response to the call LC-SPACE-04-EO-2019-2020 “Copernicus evolution – Research activities in support of cross-cutting applications between Copernicus services” under grant agreement No. 870353. --------------------------------------------------------------------------------------------- Version History: 10 March 2023: Release of Version v1.11. This is the initial release of the data.
    Keywords: Terrestrial Water Storage ; Water Balance ; Satellite Gravimetry ; Copernicus ; Groundwater ; Groundwater Storage Variations ; Mass change ; Gravity Recovery And Climate Experiment ; GRACE ; GRACE Follow-on ; GRACE-FO ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 TERRESTRIAL HYDROSPHERE 〉 GROUND WATER 〉 WATER TABLE ; environment 〉 natural environment 〉 terrestrial environment ; The Present
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mölg, Nico; Bolch, Tobias; Rastner, Philipp; Strozzi, Tazio; Paul, Frank (2018): A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges. Earth System Science Data, 10(4), 1807-1827, https://doi.org/10.5194/essd-10-1807-2018
    Publication Date: 2023-01-13
    Description: Knowledge about the coverage and characteristics of glaciers in High Mountain Asia is still incomplete and heterogeneous. However, several applications such as modelling of past or future glacier development, runoff or glacier volume, rely on the existence and accessibility of complete datasets. In particular, precise outlines of glacier extent are required to spatially constrain glacier-specific calculations such as length, area and volume changes or flow velocities. As a contribution to the Randolph Glacier Inventory (RGI) and the Global Land Ice Measurements from Space (GLIMS) glacier database, we have produced a homogeneous inventory of the Pamir and the Karakoram mountain ranges using 28 Landsat TM and ETM+ scenes acquired around the year 2000. We applied a standardized method of automated digital glacier mapping and manual correction using coherence images from ALOS-1 PALSAR-1 as an additional source of information; we then separated the glacier complexes into individual glaciers using drainage divides derived by watershed analysis from the ASTER GDEM2, and separately delineated all debris-covered areas. Assessment of uncertainties was performed for debris-covered and clean-ice glacier parts using the buffer method and independent multiple digitizing of three glaciers representing key challenges such as shadows and debris cover. Indeed, along with seasonal snow at high elevations, shadow and debris cover represent the largest uncertainties in our final dataset. In total, we mapped more than 27'800 glaciers 〉0.02 km² covering an area of 35'520 ±1948 km² and an elevation range from 2260 m to 8600 m. Regional median glacier elevations vary from 4150 m (Pamir Alai) to almost 5400 m (Karakoram), which is largely due to differences in temperature and precipitation. Supraglacial debris covers an area of 3587 ±662 km², i.e. 10% of the total glacierised area. Larger glaciers have a higher share in debris-covered area (up to 〉20%), making it an important factor to be considered in subsequent applications.
    Keywords: Karakoram_Pamir; Karakoram, Pamir
    Type: Dataset
    Format: application/zip, 116.6 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...