ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gravitational field  (1)
  • Gravitational potential  (1)
  • 1
    Publication Date: 2023-07-20
    Description: Since Kepler, Newton and Huygens in the seventeenth century, geodesy has been concerned with determining the figure, orientation and gravitational field of the Earth. With the beginning of the space age in 1957, a new branch of geodesy was created, satellite geodesy. Only with satellites did geodesy become truly global. Oceans were no longer obstacles and the Earth as a whole could be observed and measured in consistent series of measurements. Of particular interest is the determination of the spatial structures and finally the temporal changes of the Earth's gravitational field. The knowledge of the gravitational field represents the natural bridge to the study of the physics of the Earth's interior, the circulation of our oceans and, more recently, the climate. Today, key findings on climate change are derived from the temporal changes in the gravitational field: on ice mass loss in Greenland and Antarctica, sea level rise and generally on changes in the global water cycle. This has only become possible with dedicated gravity satellite missions opening a method known as satellite gravimetry. In the first forty years of space age, satellite gravimetry was based on the analysis of the orbital motion of satellites. Due to the uneven distribution of observatories over the globe, the initially inaccurate measuring methods and the inadequacies of the evaluation models, the reconstruction of global models of the Earth's gravitational field was a great challenge. The transition from passive satellites for gravity field determination to satellites equipped with special sensor technology, which was initiated in the last decade of the twentieth century, brought decisive progress. In the chronological sequence of the launch of such new satellites, the history, mission objectives and measuring principles of the missions CHAMP, GRACE and GOCE flown since 2000 are outlined and essential scientific results of the individual missions are highlighted. The special features of the GRACE Follow-On Mission, which was launched in 2018, and the plans for a next generation of gravity field missions are also discussed.
    Description: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)
    Keywords: ddc:526 ; Gravitational field ; Satellite gravimetry ; Satellite altimetry ; Gravitational field missions ; CHAMP ; GRACE ; GOCE ; GRACE FO ; Satellite orbits ; Satellite design ; Mission objectives ; Gravity field models ; Mass changes ; Satellite gradiometry ; Laser interferometer
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 60 (1994), S. 331-364 
    ISSN: 1572-9478
    Keywords: Gravitational potential ; topography ; spherical harmonics ; Phobos
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Description / Table of Contents: Résumé Les harmoniques du champ de gravitation d'un corps homogène de forme donnée sont calculés analytiquement à partir des harmoniques du développement en série du rayon vecteur exprimant la forme de la surface du corps. Outre la formule générale, des expressions détaillées, au cinquième ordre des harmoniques du rayon vecteur, sont données sous une forme bien adaptée à la programmation. Le volume, la surface et le tenseur d'inertie du corps sont calculés analytiquement `a partir des formules générales. Le cas de l'ellipsoide triaxial est pris comme test des formules établies. Un autre test numérique est fourni dans le cas le plus général. Ceci est appliqué à Phobos, et la convergence des expressions fournissant les harmoniques est numériquement démontrée.
    Notes: Abstract The spherical harmonic coefficients of the gravitational potential of an homogeneous body are analytically derived from the harmonics describing its shape. General formulas are given as well as detailed expressions up to the fifth order of the topography harmonics. The volume, surface and inertia tensor of the body are obtained as by-products. The case of a triaxial ellipsoid is given as example and used for numerical checking. Another numerical scheme for verification is provided. The application to Phobos is made and the convergence of the expressions for the harmonics is numerically established.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...