ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Abscisic acid ; Embryo culture ; Gossypium ; Isocitrate lyase ; Malate synthase ; Seed maturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cotton (Gossypium hirsutum L.) embryos excised from bolls 38–43 d after anthesis and cultured in vitro for 4 d on a nutrient agar medium containing 3.8 μM abscisic acid (ABA) developed enzyme activity and accumulated insoluble protein, neutral lipid, and dry weight similar to embryos maturing on the plant. Inclusion of ABA in the medium prevented precosious germination and allowed continued increases in catalase, malate dehydrogenase, citrate synthase, aspartate aminotransferase, and β-oxidation enzyme activities as well as de-novo synthesis of malate synthase. Isocitrate lyase activity was not detectable in ABA-cultured embryos nor normally-developed embryos. Omission of sucrose from the medium resulted in near-doubling of the development of malate synthase activity, with minimal effects on the other enzyme activities. Addition of Actinomycin D, cordycepin, or cycloheximide to ABA-containing cultures did not overcome the observed inhibition of germination, but severely reduced both the appearance of new malate synthase activity and further production of other related enzyme activities. Thus, development of these enzyme activities in the presence of ABA appears dependent on transcription and translation, while inhibition of germination by ABA at this stage of development is not sensitive to the RNA- and protein-synthesis inhibitors. The results indicate that ABA does not prevent vivipary by suppressing translation of m-RNAs coding for isocitrate lyase and its companion enzymes, as previously proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Carbohydrate metabolism ; Gluconeogenesis ; Gossypium ; Lipid utilization ; Raffinose ; Starch synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Utilization of reserve lipid and carbohydrates during germination (0–12 h) and postgerminative growth (12–48 h) was studied in cotton (Gossypium hirsutum L.) seedlings. Raffinose and stachyose were utilized during the germination period and early growth; mobilization was associated with α-galactosidase (EC 3.2.1.22) activity. Results from pulse-chase experiments with [3H]raffinose supplied exogenously to 4-h soaked seeds indicated that raffinose-derived catabolites contributed to the coincident increase in cotyledon sucrose and starch, and to the small increase in axis dry weight. Starch appears to be an alternative sink for end products of hydrolysis of reserve carbohydrates prior to the onset of rapid axis growth and cotyledon expansion. Mobilization of neutral lipid commenced at about 16 h after soaking, concomitant with development of key glyoxylate-cycle and other gluconeogenesis-related enzyme activities. Axis dry weight increased three-fold between 24 and 48 h. Results from pulse-chase (3 h, 16 h) experiments in which [2-14C]acetate was supplied to cotyledons of intact 22-h-old seedlings showed that acetate-derived metabolites were not transported exclusively to the axes, but were partitioned between axes and cotyledons. Only 27% of total incorporated radioactivity was recovered in axes following the chase, 18% was evolved as CO2, and the rest was recovered in water-soluble substances (20%) and polymers (31%) within the cotyledons. Of the polymers, 55% of the activity was in polysaccharides (Starch, pectic substances, hemicellulose, cellulose), 25% in protein, and 20% in unidentified neutral and acidic compounds. Considering these data, the amount of lipid mobilized, and various routes by which supplied [2-14C]acetate could be metabolized, it appears that lipidderived compounds contribute only 25–40% of axis dry-weight gain. Lipid-derived substances retained in the cotyledons likely are utilized for expansion and differentiation of the cotyledons into photosynthetic organs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...