ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-04
    Description: Processes of stratification and destratification in the German Bight region of fresh water influence (ROFI) are investigated following an extreme river discharge event in June 2013. For this purpose, a high‐resolution baroclinic ocean model is set up and validated against field data. The model results are used to study the temporal and spatial variability of stratification and the duration of persistent stratification in 2013. The relevant processes affecting stratification are investigated by analyzing the potential energy anomaly budget, with a focus on mixing and tidal straining. It is shown that the stratification in the German Bight is highly affected by the spring‐neap tidal cycle, with generally less stratification at spring tides due to dominant tidal mixing. It is also shown that the location of the river plume can modify this pattern. During spring tides, if the river plume is confined to the eastern region, stratification decreases significantly, as expected, due to the dominance of mixing over tidal straining. On the other hand, if the river plume moves toward deeper regions at spring tides, strong tidal straining becomes present. In this condition, mixing is weak, and the dominant tidal straining results in persistent stratification.
    Description: Key Points: Processes impacting the German Bight stratification are investigated using a high‐resolution baroclinic model. The position of the river plume highly affects the contribution of tidal straining and mixing to changes in stratification. Strong tidal straining can result in persistent stratification even during spring tides.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Description: German Research Foundation http://dx.doi.org/10.13039/501100001659
    Description: German Environment Agency http://dx.doi.org/10.13039/501100010809
    Keywords: 551.46 ; stratification ; tidal‐straining ; mixing ; extreme river discharge ; numerical model ; German Bight ROFI
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1375-1384, doi:10.1175/JPO-D-17-0266.1.
    Description: The relationship between net mixing and the estuarine exchange flow may be quantified using a salinity variance budget. Here “mixing” is defined as the rate of destruction of volume-integrated salinity variance, and the exchange flow is quantified using the total exchange flow. These concepts are explored using an idealized 3D model estuary. It is shown that in steady state (e.g., averaging over the spring–neap cycle) the volume-integrated mixing is approximately given by Mixing ≅ SinSoutQr, where Sin and Sout are the representative salinities of in- and outflowing layers at the mouth and Qr is the river volume flux. This relationship provides an extension of the familiar Knudsen relation, in which the exchange flow is diagnosed based on knowledge of these same three quantities, quantitatively linking mixing to the exchange flow.
    Description: The work was supported by the National Science Foundation through Grants OCE-1736242 to PM and OCE-1736539 to WRG and by the German Research Foundation through Grants TRR 181 and GRK 2000 to HB.
    Keywords: Coastal flows ; Diapycnal mixing ; Ocean dynamics ; Streamflow ; Diagnostics ; Isopycnal coordinates
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...