ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN26394 , Canadian Journal of Remote Sensing (ISSN 1712-7971) (e-ISSN 1712-7971); 42; 4; 379-395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-04
    Description: No abstract available
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN71842 , The Characterization and Radiometric Calibration for Remote Sensing (CALCON) Technical Meeting; Jun 17, 2019 - Jun 20, 2019; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41087 , Canadian Journal of Remote Sensing (ISSN 1712-7971) (e-ISSN 1712-7971); 42; 4; 379-395
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...