ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-01-03
    Description: The 2017 Decadal Survey (DS) highlighted Earth System Science themes, science and application questions, and several high priority objectives that have led to the inclusion of Aerosols (A) and Clouds-Convection-Precipitation (CCP) as Designated Observables (DOs). On June 1, 2018, several NASA centers (GSFC, LaRC, JPL, MSFC, GRC and ARC) submitted a joint Study Plan to the NASA Earth Science Division for the Aerosol (A) and Cloud, Convection, and Precipitation (CCP) Pre-formulation Study (A-CCP). The DS and the A-CCP team recognized the science merit in combining the A and CCP DOs for both enhancing the ability to address a number of science objectives and also to provide an expanded capability to address additional objectives beyond those addressed by individual DOs.A critical element of the A-CCP observing strategy is to make extensive use of new passive and active sensors as well as of the so-called Program-of-Record (PoR), complemented by a fully integrated sub-orbital component. Central to this observing system design is the adoption of a Value Framework in which quantitative assessment of the science benefits of space-and air-borne assets is a key element. Given pre-defined A-CCP science objectives and geophysical variables with desired accuracies, A-CCP relies on a spectrum of Observing System Simulation Experiments (OSSEs) aimed at addressing pixel level retrieval uncertainties and sampling trade-offs. In this talk we will discuss a subset of Retrieval OSSEs being considered for A-CCP, namely, synergistic lidar-polarimeter retrievals of particular relevance for the A-CCP aerosol science objectives. Starting with aerosol states from the GEOS-5 Nature Run (G5NR) sampled along specific satellite orbits, we simulate polarized radiances at the desired polarimeter wavelengths with the Vector Linearized Direct Ordinate Radiative Transfer (VLIDORT) model, alongside the lidar signal for the relevant lidars with realistic error characterization. Next, inversions are performed with the Generalized Retrieval of Aerosol and Surface Properties (GRASP) system and the accuracy of the retrieved geophysical variables are assessed. In this presentation we will highlight results for key architectures being considered for A-CCP.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN76728 , AGU 2019 Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The 2017 Decadal Survey (DS) highlighted Earth System Science themes, science and application questions, and several high priority objectives that have led to the inclusion of Aerosols (A) and Clouds-Convection-Precipitation (CCP) as Designated Observables (DOs) The aerosol-related science questions outlined by the DS focus on two major themes: 1) Climate Variability and Change and 2) Weather and Air Quality. The Aerosol mission observables targeted to address these major objectives may potentially contribute to three additional themes: 3) Marine and Terrestrial Ecosystems, 4) Global Hydrological Cycle, and 5) Earth Surface and Interior; this study will examine these linkages.In response to NASA's Designated Observables Guidance for Multi-Center Study Plans released on June 1, 2018, GSFC, LaRC, JPL, MSFC, GRC and ARC submitted Study Plan to the NASA Earth Science Division for the Aerosol (A) and Cloud, Convection, and Precipitation (CCP) Pre-formulation Study (A-CCP). The DS recognized the science merit in combining the A and CCP DOs for both enhancing the ability to address a number of Most Important (MI) objectives defined by the disciplinary panels and also to provide an expanded capability to address additional objectives beyond those addressed by individual DOs. The DS also identified Integrating Themes that can also be addressed through combinations of observables including potential combinations of DOs and the PoR. The combined A+CCP portion of this study will demonstrate how the combination of A and CCP observables will enhance the objectives of A and CCP individually, while providing the ability to expand the DS objectives addressed, and will closely connect to the A and CCP studies being performed in parallel. A critical element of the A-CCP observing strategy is to make extensive use of the so-called Program-of-Record (PoR). In this regard, the Geostationary Atmospheric Composition Virtual Constellation consisting of the GEMS, TEMPO and SENTINEL-4 and other relevant geostationary assets will provide a critical foundation for A-CCP. In this talk we will discuss how the A-CCP measurements contributes to air-quality and the geostationary constellation, and conversely, how the geostationary constellation helps answering fundamental A-CCP science objectives.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN70327 , Meeting of the Atmospheric Composition Virtual Constellation; Jun 10, 2019 - Jun 12, 2019; Tokyo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...