ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Multispacecraft data from the upstream solar wind, polar cusp, and inner magnetotail are used to show that the polar ionosphere responds within a few minutes to a southward IMF turning, whereas the inner tail signatures are visible within ten min from the southward turning. Comparison of two subsequent substorm onsets, one during southward and the other during northward IMF, demonstrates the dependence of the expansion phase characteristics on the external driving conditions. Both onsets are shown to have initiated in the midtail, with signatures in the inner tail and auroral oval following a few minutes later.
    Keywords: Geophysics
    Type: NASA-CR-205242 , Paper-97GL00816 , NAS 1.26:205242 , Geophysical Research Letters (ISSN 0094-8534); 24; 8; 983-986
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The THEMIS tail seasons have provided an unprecedented opportunity to examine the causal relationship between midtail plasma flows and low latitude Pi2 pulsations. We present several events where multiple THEMIS spacecraft observed magnetotail flow bursts which were followed up to several minutes later by ground Pi2 pulsations. We find good agreement with the waveforms of the flow bursts and flank Pi2, in agreement with the hypothesis that Pi2 at low-latitude on the flank are directly-driven by periodic variations in the flow bursts. For at least I event we are able to follow the Pi2 impulses from the periodic flow bursts on the nightside. to ground Pi2 at the flanks, and finally through the dayside magnetosphere as observed by GOES. We further place the physical mechanism generating these Pi2 into the context of sub storm onset. We conclude by discussing the sequence and coupling of events that are necessary to explain the correlation, and the constraints this places on models of transient magnetospheric transport.
    Keywords: Geophysics
    Type: 10 International Conference on Substorms; Mar 22, 2010 - Mar 26, 2010; San Luis Obispo,CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-17
    Description: In this paper we derive the average configuration of the ring current as a function of the state of the magnetosphere as indicated by the Dst index. We sort magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) by spatial location and by the Dst index in order to produce magnetic field maps. From these maps we calculate local current systems by taking the curl of the magnetic field. NN7e find both the westward (outer) and the eastward (inner) components of the ring current. We find that the ring current intensity varies linearly with D.St as expected, and that the ring current is asymmetric for all Dst values. The azimuthal peak of the ring current is located in the afternoon sector for quiet conditions, and near midnight for disturbed conditions. The ring current also moves closer to the Earth during disturbed conditions. We are able to recreate the Dst index by integrating the magnetic perturbations caused by the ring current. We find that we needed to apply a 20 nT offset to Dst, and assume a perfectly conducting Earth to obtain an optimal agreement between the computed and the observed Dst. We interpret the 20 nT offset as the magnetic field generated by the quiet time ring current used as baseline in computing Dst.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-16
    Description: The complete disappearance of energetic electrons was observed by CRRES in the near geosynchronous region in 7.5% of the orbits examined. These total flux dropouts were defined by the fluxes rapidly dropping to levels below the sensitivity of the MEA energetic electron spectrometer on the CRRES satellite. They were separated into those that were only energetic electron dropouts and those that were associated with energetic ion and plasma dropouts. Approximately 20% of the events showed dropouts of 0 particle fluxes, and these were usually coincident with large increases in the local magnetic intensity and signatures of strong current systems. The energetic particle instruments and magnetometer on CRRES provide a detailed picture of the particle and field responses to these unusual conditions. Both the local morning and dusk events were associated with strong azimuthal (eastward) and radial changes in the magnetic field indicative of a strong current system approaching and sometimes crossing the CRRES position at the time of the flux dropouts. The direction of the field changes and the details of particle observations are consistent with CRRES passing through the plasma sheet boundary layer and entering the tail lobe for a significant number of the events.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents .The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as approx. 60 deg. magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN40691 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 43; 6; 2396-2404
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...