ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (4)
  • 1
    Publication Date: 2019-07-13
    Description: Observations of the three-dimensional velocity distributions of positive ions and electrons have been recently gained for the first time in Earth's distant magnetotail with the Galileo and Geotail spacecraft. For this brief discussion of these exciting results the focus is on the overall character of the ion velocity distributions during substorm activity. The ion velocity distributions within and near the magnetotail current sheet are not accurately described as convecting, isotropic Maxwellians. The observed velocity distributions are characterized by at least two robust types. The first type is similar to the 'lima bean'-shaped velocity distributions that are expected from the nonadiabatic acceleration of ions which execute Speiser-type trajectories in the current sheet. The second distribution is associated with the presence of cold ion beams that presumably also arise from the acceleration of plasma mantle ions in the electric and weak magnetic fields in the current sheet. The ion velocity distributions in a magnetic field structure that is similar to that for plasmoids are also examined. Again the velocity distributions are not Maxwellian but are indicative of nonadiabatic acceleration. An example of the pressure tensor within the plasmoid-like event is also presented because it is anticipated that the off-diagonal elements are important in a description of magnetotail dynamics. Thus our concept of magnetotail dynamics must advance from the present assumption of co-moving electron and ion Maxwellian distributions into reformulations in terms of global kinematical models and nonadiabatic particle motion.
    Keywords: Geophysics
    Type: NASA-CR-200300 , NAS 1.26:200300 , Second International Conference on Substorms; Jan 01, 1994; Fairbanks, AK; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-16
    Description: Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.
    Keywords: Geophysics
    Type: IGGPP-Publ-4877 , GEOPHYSICAL-MONOGRAPH-104 , Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics Program; 247-260
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-16
    Description: We present Geotail plasma and field observations from the middle magnetotail near X(sub GSE) = -46 R(sub E) for the time period 1400 to 1800 UT on December 14, 1994. During that period, the Wind satellite monitored the solar wind plasma and interplanetary magnetic field (IMF) upstream of the bow shock. The IMF was northward and the plasma parameters near average. Geotail observed slow tailward flows and a northward field. The plasma and field parameters indicate that Geotail is either in the plasma sheet or in a boundary layer. We used the Wind solar wind plasma and IMF data as input for a global simulation of that time interval. Comparison of the simulation results with the observational data show very good overall agreement of the magnitudes of the plasma and field parameters. In particular, the simulation reproduces the slow tailward flows and northward field found at Geotail. Small scale temporal, variations are less well reproduced. The simulation shows the formation of a broad boundary layer (which we call tail flank boundary layer, TFBL) that consists of closed flux which is formed by magnetic magnetic reconnection of IMF and lobe field lines. The simulation results indicate that Geotail is located very close to the TFBL and may have entered the TFBL proper. We show that the TFBL plays an important role in energy transport from the solar wind into the magnetosphere during northward IMF conditions.
    Keywords: Geophysics
    Type: IGPP-Publ-4647 , Paper-97GL00218 , Geophysical Research Letters (ISSN 0094-8534); 24; 8; 951-954
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-16
    Description: This paper reports a comparison between Geotail observations of plasmas and magnetic fields at 200 R(sub E) in the Earth's magnetotail with results from a time-dependent, global magnetohydrodynamic simulation of the interaction of the solar wind with the magnetosphere. The study focuses on observations from July 7, 1993, during which the Geotail spacecraft crossed the distant tail magnetospheric boundary several times while the interplanetary magnetic field (IMF) was predominantly northward and was marked by slow rotations of its clock angle. Simultaneous IMP 8 observations of solar wind ions and the IMF were used as driving input for the MHD simulation, and the resulting time series were compared directly with those from the Geotail spacecraft. The very good agreement found provided the basis for an investigation of the response of the distant tail associated with the clock angle of the IMF. Results from the simulation show that the stresses imposed by the draping of magnetosheath field lines and the asymmetric removal of magnetic flux tailward of the cusps altered considerably the shape of the distant tail as the solar wind discontinuities convected downstream of Earth. As a result, the cross section of the distant tail was considerably flattened along the direction perpendicular to the IMF clock angle, the direction of the neutral sheet following that of the IMF. The simulation also revealed that the combined action of magnetic reconnection and the slow rotation of the IMF clock angle led to a braiding of the distant tail's magnetic field lines along the axis of the tail, with the plane of the braid lying in the direction of the IMF.
    Keywords: Geophysics
    Type: IGPP Publ-4876 , Paper-97JA02926 , Journal of Geophysical Research (ISSN 0148-0227); 103; A5; 9121-9141
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...