ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: On May 29, 1996, under steady strong northward IMF and high solar wind dynamic pressure conditions both Polar and Interball cross field lines that pass through the northern cusp and apparently close to the post-cusp reconnection site. The magnetopause current observed by Interball consists of two quite distinct layers, an inner broad current that is quite turbulent and another current that is quite abrupt and quiet. Polar also crosses current layers, similar to the Interball inner one. These observations support a model in which cusp field lines experience essentially stochastic behavior but on average provide topological connection between the cusp and magnetosheath.
    Keywords: Geophysics
    Type: Paper-98GL01402 , Geophysical Research Letters (ISSN 0094-8534); 25; 15; 2963-2966
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-15
    Description: Using measurements from the High Altitude Plasma Instrument (HAPI) on the Dynamics-Explorer 1 (DE-1) spacecraft and the Low Altitude Plasma Instrument (LAPI) on Dynamics Explorer 2 (DE 2), we investigate both die high altitude and low altitude extents of the auroral acceleration region. To infer the high altitude limit, we searched the HAPI data base for evidence of upward-directed auroral electric fields located above the spacecraft when the HAPI spacecraft is above 9000 km altitude. We find that such acceleration is common when DE-1 flies through die auroral oval at an altitude of 9,000-11,000 km. At altitudes above 11,000 km, the fraction of the orbits with evidence of at least a 1000 V potential drop above the spacecraft falls, becoming essentially zero above an altitude of 15,000 km. Above that altitude, small (100 V) potential drops are frequently observed, but only rarely are approx. 1 kV potentials observed, typically associated with polar cap or 'theta' arcs or westward traveling surges. To investigate the low-altitude limit of the auroral acceleration region, we use conjunctions of DE 1 and DE 2 along auroral field lines and match the upgoing fluxes of ionospheric ions observed by DE 2 with the flux of accelerated upgoing ions observed at DE 1. Calculating the ionospheric scale height from the ion and electron temperatures and assuming that the parallel flow velocity is independent of height above 800 km, we calculate the altitude at which the upwelling ionospheric ions are effectively completely lost to upward acceleration. The initial lowest-altitude acceleration process could be either a perpendicular acceleration or a parallel electric field, but it must be sufficient to give the entire distribution escape energy. We find that in the two cases studied, near the region of peak auroral potential drop the altitude of this acceleration was around 1700 km (near the O/H neutral crossover altitude), but was significantly higher (approx. 2000 km) near the edges of the arc, where the potential was lower. The composition of the upgoing ion beam was consistent with these heights, being predominately H(+) near the edges and O(+) near the peak.
    Keywords: Geophysics
    Type: NASA-CR-204419 , NAS 1.26:204419 , Auroral Plasma Dynamics; 143-154
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The magnetic storm of 22-23 June 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE (Active Magnetosphere and Planetary Electrodynamics Response), and ionospheric flow data from Defense Meteorological Satellite Program (DMSP). Our real-time space weather alert system sent out a "red alert," correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric oxygen, dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS Fast Plasma Instrument suite. At ionospheric altitudes, the AMPERE data show highly variable currents exceeding 20 MA. We present numerical simulations with the Block Adaptive Tree-Solarwind - Roe - Upwind Scheme (BATS-R-US) global magnetohydrodynamic model linked with the Rice Convection Model. The model predicted the magnitude of the dipolarizations, and varying polar cap convection patterns, which were confirmed by DMSP measurements.
    Keywords: Geophysics
    Type: M16-5473 , Geophysical Research Letters (ISSN 0094-8276); 43; 14; 7311-7318
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...