ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Ozone (O3) is an important greenhouse gas, toxic pollutant, and plays a major role in atmospheric chemistry. Tropospheric O3 which resides in the planetary boundary layer (PBL) is highly reactive and has a lifetime on the order of days, however, O3 in the free troposphere and stratosphere has a lifetime on the order of weeks or months. Modeling O3 mixing ratios at and above the surface is difficult due to the multiple formation/destruction processes and transport pathways that cause large spatio-temporal variability in O3 mixing ratios. This talk will summarize in detail the global/regional models that are commonly used to simulate/predict O3 mixing ratios in the United States. The major models which will be focused on are the: 1) Community Multi-scale Air Quality Model (CMAQ), 2) Comprehensive Air Quality Model with Extensions (CAMx), 3) Goddard Earth Observing System with Chemistry (GEOS-Chem), 4) Real Time Air Quality Modeling System (RAQMS), 5) Weather Research and Forecasting/Chemistry (WRF-Chem) model, National Center for Atmospheric Research (NCAR)'s Model for OZone And Related chemical Tracers (MOZART), and 7) Geophysical Fluid Dynamics Laboratory (GFDL) AM3 model. I will discuss the major modeling components which impact O3 mixing ratio calculations in each model and the similarities/differences between these models. This presentation is vital to the 2nd Annual Tropospheric Ozone Lidar Network (TOLNet) Conference as it will provide an overview of tools, which can be used in conjunction with TOLNet data, to evaluate the complex chemistry and transport pathways controlling tropospheric O3 mixing ratios.
    Keywords: Geophysics
    Type: ARC-E-DAA-TN22608 , TOLNet (Tropospheric Ozone LIDAR Network) Workshop.; Jun 16, 2015 - Jun 18, 2015; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Observed sulfur dioxide (SO2)mixing ratios onboard unmanned aerial systems (UAS) duringMarch 11-13, 2013 are used to constrain the three-day averaged SO2 degassing flux fromTurrialba volcanowithin a Bayesian inverse modeling framework. A mesoscale model coupled with Lagrangian stochastic particle backward trajectories is used to quantify the source-receptor relationships at very high spatial resolutions (i.e., b1 km). The model shows better performance in reproducing the near-surface meteorological properties and observed SO2 variations when using a first-order closure non-local planetary boundary layer (PBL) scheme. The optimized SO2 degassing fluxes vary from 0.59 +/- 0.37 to 0.83 +/- 0.33 kt d1 depending on the PBL scheme used. These fluxes are in good agreement with ground-based gas flux measurements, and correspond to corrective scale factors of 8-12 to the posteruptive SO2 degassing rate in the AeroCom emission inventory. The maximum a posteriori solution for the SO2 flux is highly sensitive to the specification of prior and observational errors, and relatively insensitive to the SO2 loss term and temporal averaging of observations. Our results indicate relatively low degassing activity but sustained sulfur emissions from Turrialba volcano to the troposphere during March 2013. This study demonstrates the utility of low-cost small UAS platforms for volcanic gas composition and flux analysis.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN40324 , Journal of Volcanology and Geothermal Research (ISSN 0377-0273); 325; 110-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...