ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Eucrites are a class of basaltic meteorites that, along with the howardites and diogenites, likely derive from the asteroid 4-Vesta. This asteroid is depleted in moderately volatile elements relative to the Earth and carbonaceous chondrites. Extrapolation of this depletion trend predicts that bulk silicate 4-Vesta (BSV) contains at most 250-1000 g/g H2O, which is approximately a factor of two lower than the H2O content of Earth. To obtain more accurate H2O and F estimates for BSV, we examined four unequilibrated antarctic meteorites, Yamato(Y)-793548, Y-82210, Y-75011, and Y-74450, by EPMA and SIMS. Pyroxenes contain MgO-rich cores and FeO-rich rims, consistent with primary magmatic zoning. Volatile concentrations generally follow patterns expected for growth zoning with lower values in the cores and higher in the rims. These features indicate that thermal metamorphism and other post-crystallization processes did not significantly perturb the volatile contents of these unequilibrated eucrite pyroxenes. We used these data to derive best estimates for the BSV H2O and F content based on experimentally determined pyroxene-melt partition coefficients and models for magma generation on Vesta. In addition, we measured D/H in the early crystallizing pyroxenes and late crystallzing apatites. We find that the D/H of pyroxene and apatite are within error of one another as well as previous measurements of apatite in equilibrated eucrites. These results imply that degassing was minimal or did not fractionate D/H. Degassing may have been limited if eucrites were shallowly emplaced sills or dykes, or the total H2O content of the magmas was too low for vapor saturation. An alternative mechanism for limited D/H fractionation is that degassing did occur, but the H2/H2O of the exsolved vapor was approximately 15:85, as predicted from experiments.
    Keywords: Geophysics
    Type: JSC-CN-39359 , Goldschmidt2017; Aug 13, 2017 - Aug 18, 2017; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Due to its very low solubility in silicate melts, CO2 concentrations in melt inclusions (MIs) within crystals are commonly orders of magnitude less than the total concentration in the multiphase magma, strongly limiting the possibility to constrain CO2 abundance based on the dissolved quantities. Here we develop a statistical method to process MI data, which allows analytical uncertainties to be taken into account together with the peculiar features of the local saturation surface. The method developed leads to retrieve total H2O and CO2 concentrations in magma as well as the gas phase abundance at the time of magma crystallization. Application to a set of 29 high-resolution secondary ion mass spectrometry (SIMS) MI data from a single specimen of the 1842–1844 eruption of Kilauea, Hawaii, reveals the existence of heterogeneous total CO2 abundance, and of at least 2–6 wt % total CO2 in some magma batches, two orders of magnitude higher than the dissolved amounts and 30–50 times more abundant than the corresponding total H2O content. Heterogeneous total volatile concentrations are interpreted as due to a combination of degassing and gas flushing in magma subject to convective motion at shallow depth where P 〈 100 MPa. In such a view, the magma rising to shallow depth in the volcanic system carries initially a total volatile content ≤1 wt %, corresponding to the determined low total CO2 population, and consistent with previous global estimates. The high CO2 populations correspond to progressive CO2 enrichment due to degassing at low P and flushing from a deep CO2-rich gas. A total CO2 content 〉1 wt % is likely to characterize the 〉30 km deep magma, not represented in the analyzed inclusions, from which a CO2-rich gas phase exsolves and decouples from the liquid.
    Description: Published
    Description: B12201
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: carbon dioxide ; Kilauea volcano ; conduit dynamics ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...