ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The Space Technology 5 (ST-5) mission successfully placed three micro-satellites in a 300 x 4500 km dawn-dusk orbit on 22 March 2006. Each spacecraft carried a boom-mounted vector fluxgate magnetometer that returned highly sensitive and accurate measurements of the geomagnetic field. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of approximately 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness and current density. In doing so, we demonstrate two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit; 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include geomagnetic field gradient analyses as well as field-aligned and ionospheric currents.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: We reexamined the processes leading to saturation of the electric field, transmitted into the Earth's ionosphere from the solar wind, incorporating features of the coupled system previously ignored. We took into account that the electric field is transmitted into the ionosphere through a region of open field lines, and that the ionospheric conductivity in the polar cap and auroral zone may be different. Penetration of the electric field into the magnetosphere is linked with the generation of the Alfven wave, going out from the ionosphere into the solar wind and being coupled with the field-aligned currents at the boundary of the open field limes. The electric field of the outgoing Alfven wave reduces the original electric field and provides the saturation effect in the electric field and currents during strong geomagnetic disturbances, associated with increasing ionospheric conductivity. The electric field and field-aligned currents of this Alfven wave are dependent on the ionospheric and solar wind parameters and may significantly affect the electric field and field-aligned currents, generated in the polar ionosphere. Estimating the magnitude of the saturation effect in the electric field and field-aligned currents allows us to improve the correlation between solar wind parameters and resulting disturbances in the Earth's magnetosphere.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; Volume 115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.
    Keywords: Geophysics
    Type: To appear in Science Magazine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote earth field sensing magnetometer and servo control building; and a remote power control and instrumentation building. The inner coils are 42-foot in diameter and a 10-foot by 10-foot opening through the outer coils accommodates spacecraft access to the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.
    Keywords: Research and Support Facilities (Air)
    Type: 23rd Space Simulation Conference; Nov 08, 2004 - Nov 11, 2004; Annapolis, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (MI and M2). For MI the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward 1M F turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx.32 s later by a 7-s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to detem11ne PTE dimensions and flux content The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury's radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx.30 kV to the cross-magnetospheric electric potential.
    Keywords: Geophysics
    Type: GSFC.JA.4591.2011 , Geophysical Research Letters; 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Satellite observations at the Earth, supported by theory and modeling, have established a close connection between the episodes of intense magnetospheric convection termed substorms and the occurrence of magnetic reconnection. Magnetic reconnection at the dayside magnetopause results in strong energy input to the magnetosphere. This energy can either be stored or used immediately to power the magnetospheric convection that produces the phenomena that collectively define the 'substorm.' However, many aspects of magnetic reconnection and the dynamic response of the coupled solar wind - magnetosphere - ionosphere system at the Earth during substorms remain poorly understood. For example, the rate of magnetic reconnection is thought to be proportional to the local Alfven speed, but the limited range of changes in this solar wind parameter at 1 AU have made it difficult to detect its influence over energy input to the Earth's magnetosphere. In addition, the electrical conductance of the ionosphere and how it changes in response to auroral charged particle precipitation are hypothesized to play a critical role in the development of substorms, but the nature of this electrodynamic interaction remain difficult to deduce from Earth observations alone. The amount of energy the terrestrial magnetosphere can store in its tail, the duration of the storage, and the trigger(s) for its dissipation are all thought to be determined by not only the microphysics of the cross-tail current layer, but also the properties of the coupled magnetosphere - ionosphere system. Again, the separation of microphysics effects from system response has proved very difficult using measurements taken only at the Earth. If MESSENGER'S charged particle and magnetic field measurements confirm the occurrence of terrestrial-style substorms in Mercury's miniature magnetosphere, then it may be possible to determine how magnetospheric convection, field-aligned currents, charged particle acceleration, reconnection, and tail energy storage are influenced by the intense magnetic reconnection expected to be associated with solar wind conditions at 0.3 - 0.5 AU from the Sun and the simplified electrodynamic feed-back anticipated for a planet lacking an ionosphere. MESSENGER observations from its 14 January 2008 Mercury flyby relevant to the occurrence of magnetic reconnection and substorms at Mercury will be discussed.
    Keywords: Geophysics
    Type: International Conference on Substorms; May 01, 2008 - May 09, 2008; Graz; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
    Keywords: Geophysics
    Type: 2008 Asia Oceania Geosciences Society (AOGS); Jun 16, 2008 - Jun 20, 2008; Busan; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-26
    Description: During the third MESSENGER flyby of Mercury on 29 September 2009, 15 crossings of the dusk-side magnetopause were observed in the magnetic field data over a 2-min period, during which the spacecraft traveled a distance of 0.2 R(sub M) (where R(sub M) is Mercury's radius). The quasi-periodic nature of the magnetic field variations during the crossings, the characteristic time separations of approx.16 s between pairs of crossings, and the variations of the magnetopause normal directions indicate that the signals are likely the signature of surface waves highly steepened at their leading edge that arose from the Kelvin-Helmholtz instability. At Earth, the Kelvin- Helmholtz instability is believed to lead to the turbulent transport of solar wind plasma into Earth's plasma sheet. This solar wind entry mechanism could also be important at Mercury. Citation: Boardsen, S. A., T. Sundberg, J. A.Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg (2010), Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury s magnetosphere during MESSENGER's third flyby,
    Keywords: Geophysics
    Type: GSFC.JA4558.2011 , Geophysical Research Letters; 37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: In studying the Earth's geomagnetism, it has always been a challenge to separate magnetic fields from external currents originating from the ionosphere and magnetosphere. While the internal magnetic field changes very slowly in time scales of years and more, the ionospheric and magnetospheric current systems driven by the solar wind -magnetosphere interaction are very dynamic. They are intimately controlled by the ionospheric electrodynamics and ionospheremagnetosphere coupling. Single spacecraft observations are not able to separate their spatial and temporal variations, and thus to accurately describe their configurations. To characterize and understand the external currents, satellite observations require both good spatial and temporal resolutions. This paper reviews our observations of the external currents from two recent LEO satellite missions: Space Technology 5 (ST-5), NASA's first three-satellite constellation mission in LEO polar orbit, and Communications/Navigation Outage Forecasting System (C/NOFS), an equatorial satellite developed by US Air Force Research Laboratory. We present recommendations for future geomagnetism missions based on these observations.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN17301
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: We present preliminary results from a systematic study using simultaneous data from three spacecraft, Wind, IMP 8 (Interplanetary Monitoring Platform) and Geotail to examine interplanetary length scales and their implications on predictability for magnetic field parcels in the typical solar wind. Time periods were selected when the plane formed by the three spacecraft included the GSE (Ground Support Equipment) x-direction so that if the parcel fronts were strictly planar, the two adjacent spacecraft pairs would determine the same phase front angles. After correcting for the motion of the Earth relative to the interplanetary medium and deviations in the solar wind flow from radial, we used differences in the measured front angle between the two spacecraft pairs to determine structure radius of curvature. Results indicate that the typical radius of curvature for these IMF parcels is of the order of 100 R (Sub E). This implies that there are two important IMF (Interplanetary Magnetic Field) scale lengths relevant to predictability: (1) the well-established scale length over which correlations observed by two spacecraft decay along a given IMF parcel, of the order of a few tens of Earth radii and (2) the scale length over which two spacecraft are unlikely to even observe the same parcel because of its curvature, of the order of a hundred Earth radii.
    Keywords: Geophysics
    Type: International Journal of Geomagnetism and Aeronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...