ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GeoB; GeoB1706-2; GeoB1711; GeoB1711-4; GeoB1711-5; Geosciences, University of Bremen; Giant box corer; GKG; Gravity corer (Kiel type); M20/2; Meteor (1986); Namibia Continental Margin; Namibia continental slope; SL; Walvis Ridge  (1)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Little, Mark G; Schneider, Ralph R; Kroon, Dick; Price, B; Bickert, Torsten; Wefer, Gerold (1997): Rapid paleoceanographic changes in the Benguela Upwelling System for the last 160,000 years as indicated by abundances of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 130(1-4), 135-161, https://doi.org/10.1016/S0031-0182(96)00136-8
    Publication Date: 2024-02-02
    Description: Two sediment cores retrieved from the continental slope in the Benguela Upwelling System, GeoB 1706 (19°33.7'S 11°10.5'E) and GeoB 1711 (23°18.9'S, 12°22.6'E), reveal striking variations in planktonic foraminiferal abundances during the last 160,000 years. These fluctuations are investigated to assess changes in the intensity and position of the upwelling centres off Namibia. Four species make up over 95% of the variation within the core, and enable the record to be divided into episodes characterized by particular planktonic foraminiferal assemblages. The fossil assemblages have meaningful ecological significance when compared to those of the modern day and the relationship to their environment. The cold-water planktonic foraminifer, Neogloboquadrina pachyderma sinistral [N. pachyderma (s)], dominates the modern-day, coastal upwelling centres, and Neogloboquadrina pachyderma dextral and Globigerina bulloides characterize the fringes of the upwelling cells. Globorotalia inflata is representative of the offshore boundary between newly upwelled waters and the transitional, reduced nutrient levels of the subtropical waters. In the fossil record, episodes of high N. pachyderma (s) abundances are interpreted as evidence of increased upwelling intensity, and the associated increase in nutrients. The N. pachyderma (s) record suggests temporal shifts in the intensity of upwelling, and corresponding trophic domains, that do not follow the typical glacial-interglacial pattern. Periods of high N. pachyderma (s) abundance describe rapid, discrete events dominating isotope stages 3 and 2. The timing of these events correlates to the temporal shifts of the Angola-Benguela Front (Jansen et al., 1997) situated to the north of the Walvis Ridge. Absence of high abundances of N. pachyderma (s) from the continental slope of the southern Cape Basin indicates that Southern Ocean surface water advection has not exerted a major influence on the Benguela Current System. The coincidence of increased upwelling intensity with the movement of the Angola-Benguela Front can be interpreted mainly by changes in strength and zonality of the trade wind system.
    Keywords: GeoB; GeoB1706-2; GeoB1711; GeoB1711-4; GeoB1711-5; Geosciences, University of Bremen; Giant box corer; GKG; Gravity corer (Kiel type); M20/2; Meteor (1986); Namibia Continental Margin; Namibia continental slope; SL; Walvis Ridge
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...