ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Repeated DNA ; Ancestral repeat ; Chromosome-specificity ; Organization of the human genome ; Genome evolution ; Sequence homology ; Centromeric DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The centromeric regions of human chromosomes are characterized by diverged chromosome-specific subsets of a tandemly repeated DNA family, alpha satellite, which is based on a fundamental monomer repeat unit ∼ 171 bp in length. We have compared the nucleotide sequences of 44 alphoid monomers derived from cloned representatives of the multimeric higher-order repeat units of human chromosomes 1, 11, 17, and X. The 44 monomers exhibit an average 16% divergence from a consensus alphoid sequence, and can be assigned to five distinct homology groups based on patterns of sequence substitutions and gaps relative to the consensus. Approximately half of the overall sequence divergence can be accounted for by sequence changes specific to a particular homology group; the remaining divergence appears to be independent of the five groups and is randomly distributed, both within and between chromosomal subsets. The data are consistent with the proposal that the contemporary tandem arrays on chromosomes 1, 11, 17, and X derive from a common multimeric repeat, consisting of one monomer each from the five homology groups. The sequence comparisons suggest that this pentameric repeat must have spread to these four chromosomal locations many millions of years ago, since which time evolution of the four, now chromosome-specific, alpha satellite subsets has been essentially independent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Human chromosome 17 ; Tandemly repeated DNA ; Evolution of satellite DNA ; Sequence homogenization ; Concerted evolution ; Molecular drive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Alpha satellite DNA is a family of tandemly repeated DNA found at the centromeres of all primate chromosomes. Different human chromosomes 17 in the population are characterized by distinct alpha satellite haplotypes, distinguished by the presence of variant repeat forms that have precise monomeric deletions. Pairwise comparisons of sequence diversity between variant repeat units from each haplotype show that they are closely related in sequence. Direct sequencing of PCR-amplified alpha satellite reveals heterogeneous positions between the repeat units on a chromosome as two bands at the same position on a sequencing ladder. No variation was detected in the sequence and location of these heterogeneous positions between chromosomes 17 from the same haplotype, but distinct patterns of variation were detected between chromosomes from different haplotypes. Subsequent sequence analysis of individual repeats from each haplotype confirmed the presence of extensive haplotype-specific sequence variation. Phylogenetic inference yielded a tree that suggests these chromosome 17 repeat units evolve principally along haplotypic lineages. These studies allow insight into the relative rates and/or timing of genetic turnover processes that lead to the homogenization of tandem DNA families.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...