ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4927
    Keywords: glucose-6-phosphate dehydrogenase ; 6-phosphogluconate dehydrogenase ; baboon ; Papio ; X linkage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4927
    Keywords: glucose-6-phosphate dehydrogenase ; 6-phosphogluconate dehydrogenase ; baboon ; Papio ; X linkage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Electrophoretic polymorphisms of glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were examined in captive colonies of five subspecies of baboons (Papio hamadryas). Phenotype frequencies and family data verified the X-linked inheritance of the G6PD polymorphism. Insufficient family data were available to confirm autosomal inheritance of the 6PGD polymorphism, but the electrophoretic patterns of variant types (putative heterozygotes) suggested the codominant expression of alleles at an autosomal locus. Implications of the G6PD polymorphism are discussed with regard to its utility as a marker system for research on X-chromosome inactivation during baboon development and for studies of clonal cell proliferation and/or cell selection during the development of atherosclerotic lesions in the baboon model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 16 (1995), S. 367-374 
    ISSN: 0192-253X
    Keywords: X-chromosome inactivation ; Gpd expression ; marsupial ; development ; opossum ; triplaid ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Metatherian (marsupial) mammals possess a non-random form of X-chromosome inactivation in which the paternally-derived X is always the one inactivated. To examine the progression of X-linked gene expression during metatherian development, we compared relative levels of the maternally and paternally encoded Gpd gene products in heterozygous female Virginia opossums (Didelphis virginiana) across a moior portion of the developmental period. Panels of tissues obtained from fetuses, newborns, and pouch young were examined via polyacrylamide gel electrophoresis of the G6PD protein. As in adults, G6PD phenotypes in these developmental stages were highly skewed in favor of the maternal allele product, but in some tissues there was a marked increase in paternal allele expression with advancing developmental age. However, even by 42 days of post-partum development, expression of the paternal Gpd allele had not attained the adult, tissue-specific activity pattern. Our findings indicate remarkable developmental changes in the activity of the paternal allele in several tissues/organs continuing well into mid pouch-life stages and beyond. Specifically we found that 1) a substantially repressed paternal Gpdgene is present in the cells of female stage 29 fetuses and later developmental stages, 2) the activity state of the paternal Gpd gene is not fixed during early embryonic development in this species, 3) maior changes in paternal Gpd expression occur in advanced developmental stages and comprise a maturation of the gene expression pattern during ontogeny, and 4) alterations of paternal Gpd allele activity during development occur in a tissue-specific manner. © 1995 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 1 (1979), S. 341-353 
    ISSN: 0192-253X
    Keywords: PGK-B ; LDH-C4 ; sperm isozymes ; cryptorchism ; spermatogenesis ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The hypothesis that PGK-B, like LDH-C4, is restricted to spermatogenic cells was explored by examining isozyme patterns in testes from mice depleted of germinal cells by surgical cryptorchism. In experimentally cryptorchized C57BL/10Sn males, decline in PGK-B activity paralleled decline in LDH-C4 activity and was correlated with degeneration of spermatocytes, spermatids, and spermatozoa. Trace amounts of these sperm isozymes found in cryptorchid testes after the depletion of maturing germ cells probably came from degenerated spermatids and spermatocytes and not from somatic testicular cells.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...