ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-12-03
    Description: Linker proteins function as molecular scaffolds to localize enzymes with substrates. In B cells, B cell linker protein (BLNK) links the B cell receptor (BCR)-activated Syk kinase to the phosphoinositide and mitogen-activated kinase pathways. To examine the in vivo role of BLNK, mice deficient in BLNK were generated. B cell development in BLNK-/- mice was blocked at the transition from B220+CD43+ progenitor B to B220+CD43- precursor B cells. Only a small percentage of immunoglobulin M++ (IgM++), but not mature IgMloIgDhi, B cells were detected in the periphery. Hence, BLNK is an essential component of BCR signaling pathways and is required to promote B cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pappu, R -- Cheng, A M -- Li, B -- Gong, Q -- Chiu, C -- Griffin, N -- White, M -- Sleckman, B P -- Chan, A C -- AI42787/AI/NIAID NIH HHS/ -- CA71516/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 3;286(5446):1949-54.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Immunology, Division of Rheumatology, Department of Medicine, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10583957" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Aging ; Animals ; B-Lymphocyte Subsets/cytology/immunology ; B-Lymphocytes/*cytology/immunology/*metabolism ; Bone Marrow Cells/cytology/immunology ; Carrier Proteins/genetics/*physiology ; Cell Count ; Cell Differentiation ; Cell Separation ; Cell Size ; Flow Cytometry ; Gene Targeting ; Hematopoietic Stem Cells/*cytology/metabolism ; Immunoglobulin M/analysis ; Leukopoiesis ; Lymphoid Tissue/cytology/immunology ; Mice ; Mice, Inbred C57BL ; *Phosphoproteins ; Receptors, Antigen, B-Cell/*metabolism ; Second Messenger Systems ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-01-12
    Description: T-bet is a member of the T-box family of transcription factors that appears to regulate lineage commitment in CD4 T helper (TH) lymphocytes in part by activating the hallmark TH1 cytokine, interferon-gamma (IFN-gamma). IFN-gamma is also produced by natural killer (NK) cells and most prominently by CD8 cytotoxic T cells, and is vital for the control of microbial pathogens. Although T-bet is expressed in all these cell types, it is required for control of IFN-gamma production in CD4 and NK cells, but not in CD8 cells. This difference is also apparent in the function of these cell subsets. Thus, the regulation of a single cytokine, IFN-gamma, is controlled by distinct transcriptional mechanisms within the T cell lineage.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Szabo, Susanne J -- Sullivan, Brandon M -- Stemmann, Claudia -- Satoskar, Abhay R -- Sleckman, Barry P -- Glimcher, Laurie H -- New York, N.Y. -- Science. 2002 Jan 11;295(5553):338-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11786644" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD4-Positive T-Lymphocytes/*immunology/physiology ; Cell Differentiation ; Cell Line ; Cell Lineage ; Cytotoxicity, Immunologic ; Gene Targeting ; Immunization ; Immunoglobulin G/biosynthesis ; Interferon-gamma/*biosynthesis ; Interleukin-4/biosynthesis ; Interleukin-5/biosynthesis ; Killer Cells, Natural/immunology/metabolism ; Leishmania major ; Leishmaniasis, Cutaneous/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; T-Box Domain Proteins ; T-Lymphocytes, Cytotoxic/*immunology ; Th1 Cells/*immunology ; Transcription Factors/deficiency/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...