ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-07-10
    Description: Single-walled carbon nanotubes (SWNTs) are a family of molecules that have the same cylindrical shape but different chiralities. Many fundamental studies and technological applications of SWNTs require a population of tubes with identical chirality that current syntheses cannot provide. The SWNT sorting problem-that is, separation of a synthetic mixture of tubes into individual single-chirality components-has attracted considerable attention in recent years. Intense efforts so far have focused largely on, and resulted in solutions for, a weaker version of the sorting problem: metal/semiconductor separation. A systematic and general method to purify each and every single-chirality species of the same electronic type from the synthetic mixture of SWNTs is highly desirable, but the task has proven to be insurmountable to date. Here we report such a method, which allows purification of all 12 major single-chirality semiconducting species from a synthetic mixture, with sufficient yield for both fundamental studies and application development. We have designed an effective search of a DNA library of approximately 10(60) in size, and have identified more than 20 short DNA sequences, each of which recognizes and enables chromatographic purification of a particular nanotube species from the synthetic mixture. Recognition sequences exhibit a periodic purine-pyrimidines pattern, which can undergo hydrogen-bonding to form a two-dimensional sheet, and fold selectively on nanotubes into a well-ordered three-dimensional barrel. We propose that the ordered two-dimensional sheet and three-dimensional barrel provide the structural basis for the observed DNA recognition of SWNTs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tu, Xiaomin -- Manohar, Suresh -- Jagota, Anand -- Zheng, Ming -- England -- Nature. 2009 Jul 9;460(7252):250-3. doi: 10.1038/nature08116.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DuPont Central Research and Development, Wilmington, Delaware 19880, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19587767" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Chemical Fractionation/*methods ; DNA/*chemistry/genetics ; Gene Library ; Models, Molecular ; Nanotubes, Carbon/*chemistry ; Nucleic Acid Conformation ; Sensitivity and Specificity ; Spectrophotometry ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-12-04
    Description: Wrapping of carbon nanotubes (CNTs) by single-stranded DNA (ssDNA) was found to be sequence-dependent. A systematic search of the ssDNA library selected a sequence d(GT)n, n = 10 to 45 that self-assembles into a helical structure around individual nanotubes in such a way that the electrostatics of the DNA-CNT hybrid depends on tube diameter and electronic properties, enabling nanotube separation by anion exchange chromatography. Optical absorption and Raman spectroscopy show that early fractions are enriched in the smaller diameter and metallic tubes, whereas late fractions are enriched in the larger diameter and semiconducting tubes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zheng, Ming -- Jagota, Anand -- Strano, Michael S -- Santos, Adelina P -- Barone, Paul -- Chou, S Grace -- Diner, Bruce A -- Dresselhaus, Mildred S -- McLean, Robert S -- Onoa, G Bibiana -- Samsonidze, Georgii G -- Semke, Ellen D -- Usrey, Monica -- Walls, Dennis J -- New York, N.Y. -- Science. 2003 Nov 28;302(5650):1545-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DuPont Central Research and Development, Experimental Station, Wilmington, DE 19880, USA. ming.zheng@usa.dupont.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14645843" target="_blank"〉PubMed〈/a〉
    Keywords: Anions ; Base Sequence ; Chromatography, Ion Exchange ; DNA, Single-Stranded/*chemistry ; Deoxyribonucleotides/chemistry ; Gene Library ; Hydrogen Bonding ; Microscopy, Atomic Force ; *Nanotechnology ; *Nanotubes, Carbon ; Nucleic Acid Conformation ; Repetitive Sequences, Nucleic Acid ; Semiconductors ; Spectrum Analysis ; Spectrum Analysis, Raman ; Static Electricity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...