ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-04-21
    Description: Quiescent T cells can be induced to express many genes by mitogen or antigen stimulation. The messenger RNAs of some of these genes undergo relatively rapid degradation compared to messenger RNAs from constitutively expressed genes. A T cell activation pathway that specifically regulates the stability of messenger RNAs for the lymphokines interleukin-2, interferon-gamma, tumor necrosis factor-alpha, and granulocyte-macrophage colony-stimulating factor is induced by stimulation of the CD28 surface molecule. This pathway does not directly affect the steady-state messenger RNA level, transcription, or messenger RNA half-life of other T cell activation genes, including c-myc, c-fos, IL-2 receptor, and the 4F2HC surface antigen. These data show that stimuli received at the cell surface can alter gene expression by inducing specific changes in messenger RNA degradation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindstein, T -- June, C H -- Ledbetter, J A -- Stella, G -- Thompson, C B -- New York, N.Y. -- Science. 1989 Apr 21;244(4902):339-43.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2540528" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD28 ; Antigens, CD3 ; Antigens, Differentiation, T-Lymphocyte/immunology ; Colony-Stimulating Factors/genetics ; Drug Stability ; Gene Expression Regulation ; Granulocyte-Macrophage Colony-Stimulating Factor ; Growth Substances/genetics ; Interferon-gamma/genetics ; Interleukin-2/genetics ; *Lymphocyte Activation ; Lymphokines/*genetics ; RNA, Messenger/genetics/*metabolism ; Receptors, Antigen, T-Cell/immunology ; T-Lymphocytes/*immunology ; Transcription, Genetic ; Tumor Necrosis Factor-alpha/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-04-11
    Description: Activation of CD4(+) T lymphocytes from human immunodeficiency virus-type 1 (HIV-1)-infected donors with immobilized antibodies to CD3 and CD28 induces a virus-resistant state. This effect is specific for macrophage-tropic HIV-1. Transcripts encoding CXCR4/Fusin, the fusion cofactor used by T cell line-tropic isolates, were abundant in CD3/CD28-stimulated cells, but transcripts encoding CCR5, the fusion cofactor used by macrophage-tropic viruses, were not detectable. Thus, CD3/CD28 costimulation induces an HIV-1-resistant phenotype similar to that seen in some highly exposed and HIV-uninfected individuals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carroll, R G -- Riley, J L -- Levine, B L -- Feng, Y -- Kaushal, S -- Ritchey, D W -- Bernstein, W -- Weislow, O S -- Brown, C R -- Berger, E A -- June, C H -- St Louis, D C -- New York, N.Y. -- Science. 1997 Apr 11;276(5310):273-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9092480" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/immunology ; Antigens, CD28/*immunology ; Antigens, CD3/immunology ; CD4-Positive T-Lymphocytes/*immunology/metabolism/*virology ; Cells, Cultured ; Gene Expression Regulation ; HIV-1/*physiology ; Humans ; Interleukin-2/immunology ; *Lymphocyte Activation ; Membrane Fusion ; Membrane Proteins/*genetics ; Muromonab-CD3/immunology ; Phytohemagglutinins/pharmacology ; RNA, Messenger/genetics/metabolism ; Receptors, CCR5 ; Receptors, CXCR4 ; Receptors, Cytokine/genetics ; Receptors, HIV/*genetics ; Up-Regulation ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...