ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of microwave pulse caused by air breakdown. A Bragg scattering experiment using the plasma layers as a Bragg reflector is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The results are found to agree very well with the theory. Moreover, the time domain measurement of wave scattering provides an unambiguous way for determining the temporal evolution of electron density during the first 100 microsec period. A Langmuir double probe is also used to determine the decay rate of electron density during a later time interval (1 to 1.1 ms). The propagation of high power microwave pulses through the air is also studied experimentally. The mechanism responsible for two different degrees of tail erosion were identified. The optimum amplitude of a 1.1 microsec pulse for maximum energy transfer through the air was determined.
    Keywords: GEOPHYSICS
    Type: AD-A250721 , AGARD, Ionospheric Modification and its Potential to Enhance or Degrade the Performance of Military Systems; 12 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We use global, multiyear observations of the properties of clouds, the atmosphere, and the surface to calculate global shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere and at the surface at a resolution of 280 km and 3 hours for every third month from April 1985 to January 1989. Our validation studies suggest that the specification of cloud effects is no longer the dominant uncertainty in reconstructing the radiative fluxes at the top of atmosphere and at the surface. Rather cloud property uncertainties are now roughly equal contributors to the flux uncertainty, along with surface and atmospheric properties. The resulting SW and LW flux data sets suggest the following conclusions: (1) The net SW heating of Earth appears predominantly at the surface, whereas the net LW cooling arises predominantly from the atmosphere. The net cooling effect of clouds on top of atmospheric radiation appears primarily at the surface rather than in the atmosphere. (2) Clouds have almost no net effect on the global mean radiation balance of the atmosphere, but they enhance the latitudinal gradient in the LW cooling and reinforce the radiative forcing for the mean atmospheric circulation. Clouds act to mute seasonal contrasts however. (3) Clouds enhance the land-ocean contrasts of the atmospheric cooling, reinforcing the growth of standing eddy motions; but reduce land-ocean contrasts of the surface heating.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1167-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The largest uncertainty in upwelling shortwave (SW) fluxes (approximately equal 10-15 W/m(exp 2), regional daily mean) is caused by uncertainties in land surface albedo, whereas the largest uncertainty in downwelling SW at the surface (approximately equal 5-10 W/m(exp 2), regional daily mean) is related to cloud detection errors. The uncertainty of upwelling longwave (LW) fluxes (approximately 10-20 W/m(exp 2), regional daily mean) depends on the accuracy of the surface temperature for the surface LW fluxes and the atmospheric temperature for the top of atmosphere LW fluxes. The dominant source of uncertainty is downwelling LW fluxes at the surface (approximately equal 10-15 W/m(exp 2)) is uncertainty in atmospheric temperature and, secondarily, atmospheric humidity; clouds play little role except in the polar regions. The uncertainties of the individual flux components and the total net fluxes are largest over land (15-20 W/m(exp 2)) because of uncertainties in surface albedo (especially its spectral dependence) and surface temperature and emissivity (including its spectral dependence). Clouds are the most important modulator of the SW fluxes, but over land areas, uncertainties in net SW at the surface depend almost as much on uncertainties in surface albedo. Although atmospheric and surface temperature variations cause larger LW flux variations, the most notable feature of the net LW fluxes is the changing relative importance of clouds and water vapor with latitude. Uncertainty in individual flux values is dominated by sampling effects because of large natrual variations, but uncertainty in monthly mean fluxes is dominated by bias errors in the input quantities.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1149-1165
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The decay processes of the plasma layers generated by two intersecting microwave pulses in 1 torr dry air are investigated by Bragg scattering method. The results of measurement show that the electrons decay initially at the three-body attachment rate. However, when enough negative molecule ions are produced through the electron attachment process, the regeneration of electrons via detachment process is increased and eventually balances out the electron attachment loss. The net electron loss is then dominated by the recombination process. The temporal evolution of electron density has also been reproduced by the numerical result of a system of three modal equations for a best fit detachment rate.
    Keywords: GEOPHYSICS
    Type: International Journal of Infrared and Millimeter Waves (ISSN 0195-9271); 12; 335-343
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.
    Keywords: GEOPHYSICS
    Type: Physics of Fluids B (ISSN 0899-8221); 2; 667-673
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...