ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Approximately 400 globally distributed xenolith samples are examined to determine whether continental regions are characterized by relatively magnetic crusts lying on relatively nonmagnetic mantles. Samples of mantle peridotites and mafic granulites by Wasilewski et al. (1979) are supplemented by samples of mantle and crustal xenoliths from Asia, North America, Africa, and Antarctica. The data indicate that a magnetic crustal layer overlies a nonmagnetic mantle much in the same manner as proposed by Jarchow and Thompson (1989). Nonmagnetic chrome spinels and magnesian ilmenites make up the ultramafic upper-mantle xenolith suite. Mafic rocks are the typically magnetic components of the crust, and induced magnetizations can account for long-wavelength magnetic anomalies measured remotely by aircraft and spacecraft.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 22; p. 2259-2262.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-16
    Description: Magnetic hysteresis loops and the derived hysteresis ratios R sub H and R sub I are used to classify the various natural dilute magnetic materials. R sub I is the ratio of saturation isothermal remanence (I sub R) to saturation (I sub S) magnetization, and R sub H is the ratio of remanent coercive force (H sub R) to coercive force (H sub C). The R sub H and R sub I values depend on grain size, the characteristics of separate size modes in mixtures of grains of high and low coercivity, and the packing characteristics. Both R sub H and R sub I are affected by thermochemical alterations of the ferromagnetic fraction. Hysteresis loop constriction is observed in lunar samples, chondrite meteorites, and thermochemically altered basaltic rocks, and is due to mixtures of components of high and low coercivity. Discrete ranges of R sub H and R sub I for terrestrial and lunar samples and for chondrite meteorites provide for a classification of these natural materials based on their hysteresis properties.
    Keywords: GEOPHYSICS
    Type: Earth and Planetary Science Letters; 20; 1, Se; Sept
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: Magnetism in the crust and the upper mantle and magnetic results indicating that the seismic Moho is a magnetic boundary are considered. Mantle derived rocks - peridotites from St. Pauls rocks, dunite xenoliths from the Kaupulehu flow, and peridotite, dunite, and eclogite xenoliths from Roberts Victor and San Carlos diatremes - are weakly magnetic with saturation magnetization values from 0.013 emu/gm to less than 0.001 emu/gm which is equivalent to 0.01 to 0.001 wt% Fe304. Literature on the minerals in mantle xenoliths shows that metals and primary Fe304 are absent, and that complex Cr, Mg, Al, and Fe spinels are dominant. These spinels are non-magnetic at mantle temperatures, and the crust/mantle boundary can be specified as a magnetic mineralogy discontinuity. The new magnetic results indicate that the seismic Moho is a magnetic boundary, the source of magnetization is in the crust, and the maximum Curie isotherm depends on magnetic mineralogy and is located at depths which vary with the regional geothermal gradient.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters; 6; July 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: A lodestone is an iron ore that behaves as a permanent magnet. A protolodestone is an iron ore capable of being charged sufficiently strongly to behave as a permanent magnet. In the present paper, important criteria are established which distinguish lodestones from other iron ores. Magnetic hysteresis-loop data provide evidence that the massive pieces of lodestone behave magnetically as fine intergrowths rather than coarse multidomain material. This means that the iron ores have been magnetically hardened. The nature and scale of the hardening microstructure is illustrated by photo micrographs. The mechanism of charging the protolodestone appears to be either transient magnetic fields with lightning-discharge currents, or presently obscure aspects of magnetization intensity enhancement associated with maghemitization of massive iron ores.
    Keywords: GEOPHYSICS
    Type: Physics of the Earth and Planetary Interiors; 15; 4, De; Dec. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: A review is conducted of studies performed during the Magsat project. The obtained data are considered, taking into account questions of data availability, aspects of orbit attitude determination, ionospheric noise, a field model, and an anomaly field presentation. Models for interpretation are discussed, giving attention to forward modeling, and equivalent layer inverse modeling. In an evaluation of rock property constraints, the magnetic bottom is discussed along with Curie points, metamorphism and magnetization, and the direction of magnetization.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 90; 2511-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: Magnetic data are presented for mantle derived rocks: peridtites from St. Pauls rocks, dunite xenoliths from the kaupulehu flow in Hawaii, as well as peridolite, dunite and eclogite xenoliths from Roberts Victor, Dutoitspan, Kilbourne Hole, and San Carlos diatremes. The rocks are paramagnetic or very weakly ferromagnetic at room temperature. Saturation magnetization values range from 0.013 emu/gm to less than 0.001 emu/gm. A review of pertinent literature dealing with analysis of the minerals in mantle xenoliths provides evidence that metals and primary Fe3O4 are absent, and that complex CR, Mg, Al, and Fe spinels dominate the oxide mineralogy. All of the available evidence supports the magnetic results, indicating that the seismic MOHO is a magnetic boundary.
    Keywords: GEOPHYSICS
    Type: NASA-TM-80245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: An equivalent layer magnetization model is discussed. Inversion of long wavelength satellite magnetic anomaly data indicates a very magnetic source region centered in south central Kentucky. Refraction profiles suggest that the source of the gravity anomaly is a large mass of rock occupying much of the crustal thickness. The outline of the source delineated by gravity contours is also discernible in aeromagnetic anomaly patterns. The mafic plutonic complex, and several lines of evidence are consistent with a rift association. The body is, however, clearly related to the inferred position of the Grenville Front. It is bounded on the north by the fault zones of the 38th Parallel Lineament. It is suggested that such magnetization levels are achieved with magnetic mineralogies produced by normal oxidation and metamorphic processes and enhanced by viscous build-up, especially in mafic rocks of alkaline character.
    Keywords: GEOPHYSICS
    Type: NASA-TM-82163
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...