ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • GEOPHYSICS  (2)
  • 1
    Publication Date: 2006-02-14
    Description: The major criterion for the Atmospheric General Circulation Experiment (AGCE) design is that it be possible to realize strong baroclinic instability in the spherical configuration chosen. A configuration was selected in which a hemispherical shell of fluid is subjected to latitudinal temperature gradients on its spherical boundaries and the latitudinal boundaries are insulators. Work in the laboratory with a cylindrical version of this configuration revealed more instabilities than baroclinic instability. Since researchers fully expect these additional instabilities to appear in the spherical configuration also, they decided to continue the laboratory cylindrical annulus studies. Four flow regimes were identified: an axisymmetric Hadley circulation, boundary layer convection, baroclinic waves and deep thermal convection. Regime diagrams were prepared.
    Keywords: GEOPHYSICS
    Type: NASA(MSFC FY-85 Atmospheric Processes Research Review; 2 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This report describes the results of a small study program in support of the design studies for NASA's proposed Atmospheric General Circulation Experiment (AGCE). The proposed experiment will model the atmosphere using a hemispherical layer of a dielectric fluid such as silicone oil, heated at the equator, and with a large radial AC electric field producing a temperature-dependent radial body force similar to radial gravity. The effect of terrestrial gravity on the experiment can be eliminated by doing the experiment in space flight. The author developed a series of three computer models to support these design studies. The first two calculate axisymmetric solutions and their stability to small non-axisymmetric perturbations. The third computes three-dimensional solutions. These codes allow the option of solving problems in a cylindrical geometry as well as a rather generally defined spherical layer.
    Keywords: GEOPHYSICS
    Type: NASA-CR-178480 , NAS 1.26:178480 , RAI-84-AG-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...