ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications are global circulation and diffusion studies; also the generation of profiles for comparison with other atmospheric measurement techniques such as satellite measured temperature profiles and infrasonic measurement of wind profiles. GRAM-88 is the latest version of the software GRAM. The software GRAM-88 contains a number of changes that have improved the model statistics, in particular, the small scale density perturbation statistics. It also corrected a low latitude grid problem as well as the SCIDAT data base. Furthermore, GRAM-88 now uses the U.S. Standard Atmosphere 1976 as a comparison standard rather than the US62 used in other versions. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The Jacchia (1970) model simulates the high atmospheric region above 115km. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The improved code eliminated the calculation of geostrophic winds above 125 km altitude from the model. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). A fairing technique between 90km and 115km accomplished a smooth transition between the modified Groves values and the Jacchia values. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. GRAM-88 incorporates a hydrostatic/gas law check in the 0-30 km altitude range to flag and change any bad data points. Between 5km and 30km, an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The GRAM-88 program is for batch execution on the IBM 3084. It is written in STANDARD FORTRAN 77 under the MVS/XA operating system. The IBM DISPLA graphics routines are necessary for graphical output. The program was developed in 1988.
    Keywords: GEOPHYSICS
    Type: MFS-28397
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The Four-D Global Reference Atmosphere program was developed from an empirical atmospheric model which generates values for pressure, density, temperature, and winds from surface level to orbital altitudes. This program can be used to generate altitude profiles of atmospheric parameters along any simulated trajectory through the atmosphere. The program was developed for design applications in the Space Shuttle program, such as the simulation of external tank re-entry trajectories. Other potential applications would be global circulation and diffusion studies, and generating profiles for comparison with other atmospheric measurement techniques, such as satellite measured temperature profiles and infrasonic measurement of wind profiles. The program is an amalgamation of two empirical atmospheric models for the low (25km) and the high (90km) atmosphere, with a newly developed latitude-longitude dependent model for the middle atmosphere. The high atmospheric region above 115km is simulated entirely by the Jacchia (1970) model. The Jacchia program sections are in separate subroutines so that other thermosphericexospheric models could easily be adapted if required for special applications. The atmospheric region between 30km and 90km is simulated by a latitude-longitude dependent empirical model modification of the latitude dependent empirical model of Groves (1971). Between 90km and 115km a smooth transition between the modified Groves values and the Jacchia values is accomplished by a fairing technique. Below 25km the atmospheric parameters are computed by the 4-D worldwide atmospheric model of Spiegler and Fowler (1972). This data set is not included. Between 25km and 30km an interpolation scheme is used between the 4-D results and the modified Groves values. The output parameters consist of components for: (1) latitude, longitude, and altitude dependent monthly and annual means, (2) quasi-biennial oscillations (QBO), and (3) random perturbations to partially simulate the variability due to synoptic, diurnal, planetary wave, and gravity wave variations. Quasi-biennial and random variation perturbations are computed from parameters determined by various empirical studies and are added to the monthly mean values. The UNIVAC version of GRAM is written in UNIVAC FORTRAN and has been implemented on a UNIVAC 1110 under control of EXEC 8 with a central memory requirement of approximately 30K of 36 bit words. The GRAM program was developed in 1976 and GRAM-86 was released in 1986. The monthly data files were last updated in 1986. The DEC VAX version of GRAM is written in FORTRAN 77 and has been implemented on a DEC VAX 11/780 under control of VMS 4.X with a central memory requirement of approximately 100K of 8 bit bytes. The GRAM program was originally developed in 1976 and later converted to the VAX in 1986 (GRAM-86). The monthly data files were last updated in 1986.
    Keywords: GEOPHYSICS
    Type: MFS-28293
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: The paper deals with hydrogen-chloride and hydrogen-fluoride total column measurements, their estimated long-term rates of increase, seasonal cycles, and variability, deduced from the analysis of a set of high-resolution infrared solar spectra recorded at Kitt Peak. The Kitt Peak observations and methods of analysis are described, the results are presented and compared with previously reported measurements and trends. The data is analyzed by using a multilayer nonlinear least-squares spectral fitting procedure and a consistent set of spectroscopic line parameters. Model-calculated hydrogen-chloride and hydrogen-fluoride total columns obtained with a two-dimensional model are discussed, and the model results are compared with the measured hydrogen-chloride and hydrogen-fluoride total columns, seasonal cycles, and trends. It is pointed out that the observed trends of both molecules are in satisfactory agreement with the model results calculated from emission histories and photooxidation rates for the source molecules.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.
    Keywords: GEOPHYSICS
    Type: NASA-TM-4715 , NAS 1.15:4715 , M-790
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Presented and discussed are concerns with applications of neutral atmospheric density models to space vehicle engineering design and operational problems. The area of concern which the atmospheric model developers and the model users considered, involved middle atmosphere (50 to 90 km altitude) and thermospheric (above 90 km) models and their engineering application. Engineering emphasis involved areas such as orbital decay and lifetime prediction along with attitude and control studies for different types of space and reentry vehicles.
    Keywords: GEOPHYSICS
    Type: NASA-CP-2460 , M-548 , NAS 1.55:2460
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The MSFC/J70 Orbital Atmospheric Density Model, a modified version of the Smithsonian Astrophysical Observatory Jacchia 1970 model is explained. The algorithms describing the MSFC/J70 model are included as well as listing of the computer program. The 13-month smoothed values of solar flux (F sub 10.7) and geomagnetic index (S sub p), which are required as inputs for the MSFC/J70 model, are also included and discussed.
    Keywords: GEOPHYSICS
    Type: NASA-TM-86522 , NAS 1.15:86522
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: High frequency Doppler sounder arrays were used to study the thermospheric density fluctuations caused by Typhoon Dinah in August, 1987. The results show that the maximum density fluctuations caused by the typhoon at altitudes of 150 to 350 km were close to + or - 30 percent deviation from the quiet background. The time-dependent density fluctuations were in phase with the horizontal phase velocity of major gravity waves excited by the storm. It is suggested that the study demonstrates the use of HF Doppler sounder measurement of gravity waves, horizontal wind velocity in the direction of gravity wave propagation, and density perturbations at thermospheric heights.
    Keywords: GEOPHYSICS
    Type: AIAA PAPER 89-0854
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Presented are selected thermospheric/exospheric global mean and extreme density values computed between 130 and 1100 km altitude. These values were generated from the MSFC/J70 reference orbital atmospheric model using different input conditions of solar flux and geomagnetic index, ranging from low to peak. Typical magnitudes of day-night density changes are presented, as an example, for use in space vehicle orbital analyses.
    Keywords: GEOPHYSICS
    Type: NASA-TM-86478 , M-471 , NAS 1.15:86478
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Extreme atmospheres, pertaining to summer (hot) and winter (cold) conditions for Vandenberg Air Force Base, California, are presented from 0- to 90-km altitudes. Computed values of pressure, e, kinetic temperature, virtual temperature, density, and relative differences (percentages from Vandenberg Reference Atmosphere, 1971 (VRA 71)) of the atmospheric parameters versus altitude are tabulated in increments of 250 m. Hydrostatic and gas law equations were used in conjunction with radiosonde and rocketsonde thermodynamic data in determining the vertical structure of the two atmospheric models. The summer-type density profile deviated from -9.0 percent (of the VRA-71) at the ground to 28.4 percent at 74.5-km altitude. The winter density profile went from 5.2 percent at the surface to -31.4 percent at 72 km.
    Keywords: GEOPHYSICS
    Type: NASA-TM-X-64756
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Reference atmospheres pertaining to summer (hot), winter (cold), and mean annual conditions for Edwards Air Force Base, California, are presented from surface to 90 km altitude (700 km for the annual model). Computed values of pressure, kinetic temperature, virtual temperature, and density and relative differences percentage departure from the Edwards reference atmospheres, 1975 (ERA-75) of the atmospheric parameters versus altitude are tabulated in 250 m increments. Hydrostatic and gas law equations were used in conjunction with radiosonde and rocketsonde thermodynamic data in determining the vertical structure of these atmospheric models. The thermodynamic parameters were all subjected to a fifth degree least-squares curve-fit procedure, and the resulting coefficients were incorporated into Univac 1108 computer subroutines so that any quantity may be recomputed at any desired altitude using these subroutines.
    Keywords: GEOPHYSICS
    Type: NASA-TM-X-64970
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...