ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (170)
  • Lunar and Planetary Science and Exploration  (94)
  • GEOPHYSICS  (76)
  • ddc:330
  • 1
    Publication Date: 2019-06-28
    Description: The effects of the permanent tidal effects of the Sun and Moon with specific applications to satellite altimeter data reduction are reviewed in the context of a consistent definition of geoid undulations. Three situations are applicable not only for altimeter reduction and geoid definition, but also for the second degree zonal harmonic of the geopotential and the equatorial radius. A recommendation is made that sea surface heights and geoid undulations placed on the Topex/Poseidon geophysical data record should be referred to the mean Earth case (i.e., with the permanent effects of the Sun and Moon included). Numerical constants for a number of parameters, including a flattening and geoid geopotential, are included.
    Keywords: GEOPHYSICS
    Type: NASA-TM-100775 , NAS 1.15:100775 , REPT-91B00049
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: We have solved for the potential flow downstream of the terminal shock of the solar wind in the limit of small departures from a spherical shock due to a latitudinal ram pressure variation in the supersonic solar wind. The solution connects anisotropic streamlines at the shock to uniform streamlines down the heliotail because we use a non-slip boundary condition on the heliopause at large radii. The rotational velocity about the heliotail in the near-field solution decays as the fourth power of distance from the shock. The polar divergence of the streamlines will have consequences for the previously discussed magnetic pressure ridge that may build-up just inside the heliopause.
    Keywords: GEOPHYSICS
    Type: NASA-TM-110493 , NAS 1.15:110493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: A 2D model of the plasmasphere has been developed to study the temporal evolution of plasma density in the equatorial plane of the magnetosphere. This model includes the supply and loss of hydrogen ions due to ionosphere-magnetosphere coupling as well as the effects of E x B convection. A parametric model describing the required coupling fluxes has been developed which utilizes empirical models of the neutral atmosphere, the ionosphere and the saturated plasmasphere. The plasmaspheric model has been used to examine the time it takes for the plasmasphere to refill after it has been depleted by a magnetic storm. The time it takes for the plasmasphere to reach 90 percent of its equilibrium level ranges from 3 days at L = 3 during solar minimum to as high as 100 days at L = 5 during solar maximum. Refilling is also dependent on the month of the year, with refilling requiring a longer period of time at solar maximum during June than during December for L greater than 3.2.
    Keywords: GEOPHYSICS
    Type: Planetary and Space Science (ISSN 0032-0633); 41; 1; p. 35-43.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: The Mars Exploration Rover Spirit has identified five distinct rock types in the Columbia Hills of Gusev crater. Clovis Class rock is a poorly-sorted clastic rock that has undergone substantial aqueous alteration. We interpret it to be aqueously-altered ejecta deposits formed by impacts into basaltic materials. Wishstone Class rock is also a poorly-sorted clastic rock that has a distinctive chemical composition that is high in Ti and P and low in Cr. Wishstone Class rock may be pyroclastic in origin. Peace Class rock is a sedimentary material composed of ultramafic sand grains cemented by significant quantities of Mg- and Ca-sulfates. Peace Class rock may have formed when water briefly saturated the ultramafic sands, and evaporated to allow precipitation of the sulfates. Watchtower Class rocks are similar chemically to Wishstone Class rocks, and have undergone widely varying degrees of near-isochemical aqueous alteration. They may also be ejecta deposits, formed by impacts into Wishstone-rich materials and altered by small amounts of water. Backstay Class rocks are basalt/trachybasalt lavas that were emplaced in the Columbia Hills after the other rock classes were, either as impact ejecta or by localized volcanic activity. The geologic record preserved in the rocks of the Columbia Hills reveals a period very early in martian history in which volcanic materials were widespread, impact was a dominant process, and water was commonly present.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 306; 5702; 1750-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: In this paper we report radiometric measurements of tropospheric brightness temperatures obtained during the AASE 2 experiment. These measurements represent the first attempt to characterize effective radiative temperatures as seen from above the troposphere during the Arctic winter. The reported measurements include brightness temperatures at 6.7 and 10.5 microns as seen from the NASA DC-8 aircraft flying at about 11 km altitude. We also present radiative transfer calculations to estimate the effect of tropospheric brightness temperature on the lower stratospheric heating rates. Because of the recent massive eruption of the Pinatubo volcano, we also discuss the effects of a volcanic aerosol layer. It is concluded that small particles like the volcanic aerosol or polar stratospheric clouds (PSCs) type 1 do not affect stratospheric heating rates by much; on the other hand, larger particles, PSCs types 2 and 3, may have significant effects on heating rates and consequently on dynamics of the lower stratosphere. The dynamical effects of local stratospheric temperature variations are briefly discussed.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 22; p. 2575-2578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: CO2 exchange rates were measured at selected tundra sites near Bethel, Alaska using portable, climate-controlled, instrumented enclosures. The empirically modeled exchange rate for a representative area of vegetated tundra was 1.2 +/- 1.2 g/sq m/d, compared to a tower-measured exchange over the same time period of 1.1 +.0- 1.2 g/sq m/d. Net exchange in response to varying light levels was compared to wet meadow and dry upland tundra, and to the net exchange measured by the micrometeoroidal tower technique. The multispectral reflectance properties of the sites were measured and related to exchange rates in order to provide a quantitative foundation for the use of satellite remote sensing to monitor biosphere/atmosphere CO2 exchange in the tundra biome.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; D15; p. 16,671-16,680.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Using Global Positioning System (GPS) receivers, we reoccupied several leveling benchmarks on the Kenai Peninsula of Alaska which had been surveyed by conventional leveling immediately following the March 27, 1964, Prince William Sound earthquake (M(sub w) = 9.3). By combining the two sets of measurements with a new, high-resolution model of the geoid in the region, we were able to determine the cumulative 1993-1964 postseismic vertical displacement. We find uplift at all of our benchmarks, relative to Seward, Alaska, a point that is stable according to tide gauge data. The maximum uplift of about 1 m occurs near the middle of the peninsula. The region of maximum uplift appears to be shifted northwest relative to the point of maximum coseismic subsidence. If we use tide gauge data at Nikishka and Seward to constrain the vertical motion, then the observed uplift has a trenchward tilt (down to the southeast) as well as an arching component. To explain the observations, we use creep-at-depth models. Most acceptable models require a fault slip of about 2.75 m, although this result is not unique. If the slip has been continuous since the 1964 earthquake, then the average slip rate is nearly 100 mm/yr, twice the plate convergence rate. Comparing the net uplift achieved in 29 years with that observed over 11 years in an adjacent region southeast of Anchorage, Alaska, we conclude that the rate of uplift is decreasing. A further decrease in the uplift rate is expected as the 29-year averaged displacement rate is about twice the plate convergence rate and therefore cannot be sustained over the entire earthquake cycle.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; B2; p. 2031-2038
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: We explore the implications of indicating the biosphere's self-organization by the trend over time of the net entropic flow from the Earth's surface, the actual physical boundary of virtually all biotic mass. This flow, derived from the radiative surface entropy budget, is approximately inversely related to the surface temperature when the solar incident flux remains constant. In the geophysiological ('gaian') interpretation, biospheric self-organization has increased with the progressive colonization of the continents and evolutionary developments in the land biota, as a result of surface cooling arising from biotic enhancement of weathering. The key site for this self-organization is at the interface between land and atmosphere, the soil, where carbon is sequestered by its reaction (as carbonic and organic acids) with calcium magnesium silicates. Along with disequilibrium (steady-state) levels of carbon dioxide in the atmosphere, the occurrence of differentiated soil is the critical material evidence for biospheric self-organization, whether it be geophysiological or geochemical (ie., purely result of inorganic reactions). The computed equilibrium levels of carbon dioxide and corresponding equilibrium temperatures in the past are dramatically different from the steady-state levels. With future solar luminosity increase, the biospheric capacity for climatic regulation will decrease, leading to the ending of self-organization some two billion years from now. The Earth's surface will then approach chemical equilibrium with respect to the carbonate-silicate cycle.
    Keywords: GEOPHYSICS
    Type: Origins of Life and Evolution of the Biosphere (ISSN 0169-6149); 24; 5; p. 435-450
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Data from a worldwide Global Positioning System (GPS) tracking experiment have been used to determine variations in earth rotation (UT1-UTC) over a time period of three weeks. Kalman filtering and smoothing enabled changes in UT1-UTC over intervals of 2 to 24 hrs to be detected with the GPS data. Internal consistency checks and comparisons with other solutions from very long baseline interferometry (VLBI) and satellite laser ranging (SLR) indicate that the GPS UT1-UTC estimates are accurate to about 2 cm. Comparison of GPS-estimated variations in UT1-UTC with 2-hr time resolution over 4 days with predicted variations computed from diurnal and semidiurnal oceanic tidal contributions strongly suggests that the observed periodic sub-daily variations of about 0.1 msec are largely of tidal origin.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 537-540
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...