ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0789
    Keywords: Key wordsCasuarina ; Alnus ; Frankia ; Temperature ; Soil moisture content ; Nodulation ; Inoculum storage ; Axenic cultures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Comparison of the effects of temperature on the growth in culture (increase in protein) of Frankia showed that three strains isolated from Casuarina were more tolerant of high temperature (45°C) than a strain from Alnus rubra. Optimal temperatures for growth of the Casuarina strains were in the range 25–30°C. Growth of the Alnus strain was good at 25°C but poor at 37°C. High temperatures (35–40°C) during storage for 7 months of these Frankia strains in sand, inoculated initially with liquid culture or with Frankia incorporated into alginate beads and permitted to dry, resulted in substantial loss of infectivity for the host plant species. Loss in infectivity was greater with an Alnus Frankia strain than strains from Casuarina cunninghamiana, C. equisetifolia and C. junghuniana. Three Frankia strains from C. equisetifolia were incorporated into a sand/perlite mixture with three different moisture regimes (field moisture capacity – wet: watered and maintained at field capacity; watered to field capacity but then allowed to dry – moderately wet; or watered to half field capacity and then permitted to dry – dry) and then stored for 12 weeks at 25°C and 35°C. Assessment by the most probable number (MPN) technique of the infectivity of the sand mixture for nodulation of C. equisetifolia showed significant interactions between Frankia strain, temperature and soil moisture content. The infectivity of Frankia strains ORS020607 and UGL020602q was not affected by incubation in wet sand at 25°C but fell by more than half after 12 weeks in moderate and dry conditions. Changes in infectivity were similar when incubation was at 35°C. By contrast, the infectivity of UGL020603q fell substantially under all moisture conditions and at both temperatures. The data show the importance of screening for tolerance of both temperature and moisture content when selecting strains for preparation of inoculum for use in hot climates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental biology online 2 (1997), S. 1-4 
    ISSN: 1430-3418
    Keywords: Frankia ; Tetrazolium red ; Vital staining
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An improved method for determining the viability of the nitrogen-fixing actinomycete Frankia is presented. This method uses tetrazolium red as a vital stain, which proved more effective than a previously used method of acridine orange staining.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 78 (1984), S. 99-104 
    ISSN: 1573-5036
    Keywords: Actinorhizas ; Biosynthesis ; Frankia ; Indole-3-acetic acid ; Nodules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: Alnus rubra ; Alnus glutinosa ; Fatty acids ; Frankia ; Nitrogen fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Alnus species are used widely in Britain for land reclamation, forestry and other purposes. Rapid juvenile growth of the AmericanAlnus rubra makes it an attractive species for planting on N-deficient soils, particularly those of low organic content. In small plot trials, this species is nodulated by indigenous soil frankiae as effectively asAlnus glutinosa. Over a three year period both species return similar amounts of N to the ecosystem, estimated at up to 10–12 kg N ha−1. Several strains ofFrankia have been isolated from local (Lennox Forest)A. rubra nodules. These differ morphologically and in their growth on different culture media, both from each other and fromA. glutinosa nodule isolates. AllAlnus isolates, however, have a total cellular fatty acid composition qualitatively similar to some other Group B frankiae. Glasshouse tests in N free culture suggest thatA. rubra nodules formed after inoculation of seedlings with American spore (−) isolates are three times more effective in N fixation than those inoculated with LennoxA. rubra spore (+) nodule homogenates. By contrast, the early growth of seedlings inoculated with spore (−)Frankia strains suggests at best a 35% improvement in N fixing activity over seedlings inoculated with LennoxA. rubra nodule isolates. Nevertheless, this improvement in activity, together with the better performance of seedlings inoculated with isolates compared with those treated with crushed nodule preparations, suggest that it would be worthwhile commercially to inoculate nursery stock with a spore (−)Frankia strain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: actinorhizal ; Alnus glutinosa ; acetylene reduction ; carbon dioxide ; Frankia ; nitrogen fixation ; nodules ; roots
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of aeration of the N-free rooting medium with elevated CO2 on (a) acetylene reduction by perlite-grown plants and (b) N2-fixation and long-term growth of nutrient solution-grown plants were determined for nodulatedAlnus glutinosa (L.) Gaertn. In the former experiments, roots of intact plants were incubated in acetylene in air in darkened glass jars for 3 hr, followed by a further 3 hr incubation period in air enriched with CO2 (0–5%). During incubation, the CO2 content of the jars increased by 0.17% per hour due to respiration of the root system, so that the CO2 content at 3 hr was 0.5%. Additional enrichment of the rooting medium gas-phase with CO2 equivalent to 1.1% and 1.75% CO2 of the gas volume significantly increased nitrogenase activity (ethylene production) by 55% and 50% respectively, while enrichment with greater than 2.5% CO2 decreased activity. In contrast, ethylene production by control plants, where CO2 was not added to the assay jars, decreased by 8% over the assay period. In long-term growth experiments, nodulated roots of intactAlnus glutinosa plants were sealed into jars containing N-free nutrient solution (pH 6.3) and aerated with air, or air containing elevated levels of CO2 (1.5% and 5%). Comparison of the appearance of CO2-treated with air treated plants suggested that 1.5% CO2 stimulated plant growth. However, at harvest after 5 or 6 weeks variability between plants masked the significance of differences in plant dry weight. A significant increase of 33% in total nitrogen of plants aerated with 1.5% CO2, compared with air-treated plants, was demonstrated, broadly in line with the short-term increase in acetylene reducing activity observed following incubations with similar CO2 concentrations. Shoot dry weight was not affected significantly by long-term exposure to 5% CO2, the main effect on growth being a 20% reduction in dry weight of the root system, possibly through inhibition of root system respiration. However, in contrast to the inhibitory effects of high CO2 on acetylene reduction there was no significant effect on the amounts of N2 fixed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: acid brown earth ; Alnus glutinosa ; Alnus rubra ; Frankia ; nitrogen fixation ; nodule ; peat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of soil type (an acid peat and 2 acid brown earths) andFrankia source (3 spore-positive crushed nodule inocula and spore-negative crushed nodules containing the singleFrankia ArI5) on nodulation, N content and growth ofAlnus glutinosa andA. rubra were determined in a glasshouse pot experiment of two years duration. Plants on all soils required additional P for growth. Growth of both species was very poor on peat withA. glutinosa superior toA. rubra. The former species was also superior toA. rubra on an acid brown earth with low pH and low P content. Some plant-inoculum combinations were of notable effectivity on particular soils but soil type was the major source of variation in plant weight. Inoculation with crushed nodules containingFrankia ArI5 only gave poor infection of the host plant, suggesting that inoculation with locally-collected crushed nodules can be a preferred alternative to inoculation withFrankia isolates of untested effectivity. Evidence of adaptation ofFrankia to particular soils was obtained. Thus, while the growth of all strains was stimulated by mineral soil extracts, inhibitory effects of peat extracts were more apparent with isolates from nodules from mineral soils than from peat, suggesting that survival ofFrankia on peat may be improved by strain selection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...