ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: The overall objective of this work is to characterize the flow to rough showerheads by deriving pressure drop versus velocity correlations to at can be then used in reactor scale simulations where the showerhead is approximated as a porous medium. At relatively low Reynolds numbers (less than 1-10 based on the hole length scale) and in the absence of slip flow, Darcy's Law, grad P = mu U/k, can be used to express the relation between the pressure drop and velocity where @mu@ is the fluid viscosity and it is the permeability that can be theoretically predicted as k= e R^2 /8, where e is the porosity. However, at sufficiently small hole diameters and decreased pressures (less than 5 Torr), the Knudsen number based on showerhead tube radius increases, and the flow may be in a transition regime. Different expressions have been proposed to account for this effect in the permeability by expressing k as a function of either pressure or Knudsen number. But at even higher Knudsen numbers, the pressure drop - velocity dependence is non-linear, and Darcy's Law no longer holds such that a permeability cannot be defined. The direct simulation Monte Carlo method is used along side conventional CFD techniques to determine the extent to which the CFD technique is appropriate and helps to derive correlations for the more rarefied cases of interest in these showerhead flows.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 46th American Vacuum Society International Symposium; Oct 01, 1999; Seattle, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-17
    Description: The stability of cylindrical liquid bridges in reduced gravity is affected by ambient vibrations of the spacecraft. Such vibrations are expected to excite capillary modes of the bridge. The lowest-order unstable mode is particularly susceptible to vibration as the length of the bridge approaches the stability limit. This low-order mode is known as the (2,0) mode and is an axisymmetric varicose mode of one wavelength in the axial direction. In this work, an optical system is used to detect the (2,0)-mode amplitude. The derivative of the error signal produced by this detector is used to produce the appropriate voltages on a pair of ring electrodes which are concentric with the bridge. A mode-coupled Maxwell stress profile is thus generated in proportional to the modal velocity. Depending on the sign of the gain, the damping of the capillary oscillation can be either increased or decreased. This effect has been demonstrated in Plateau-tank experiments. Increasing the damping of the capillary modes on free liquid surfaces in space could be beneficial for containerless processing and other novel technologies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session, Volume 2; 503-508; NASA/CP-2004-213205/VOL2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-16
    Description: The stability of cylindrical liquid bridges in reduced gravity is affected by ambient vibrations of the spacecraft. Such vibrations are expected to excite capillary modes of the bridge. The lowest-order unstable mode is particularly susceptible to vibration as the length of the bridge approaches the stability limit. This low-order mode is known as the (2,0) mode and is an axisymmetric varicose mode of one wavelength in the axial direction. In this work, an optical system is used to detect the (2,0)-mode amplitude. The derivative of the error signal produced by this detector is used to produce the appropriate voltages on a pair of ring electrodes which are concentric with the bridge. A mode-coupled Maxwell stress profile is thus generated in proportional to the modal velocity. Depending on the sign of the gain, the damping of the capillary oscillation can be either increased or decreased. This effect has been demonstrated in Plateau-tank experiments. Increasing the damping of the capillary modes on free liquid surfaces in space could be beneficial for containerless processing and other novel technologies. [work supported by NASA]
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Strategic Research to Enable NASA's Exploration Missions Conference; 185; NASA/TM-2004-213114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: MSC-23400 , NASA Tech Briefs, February 2004; 27-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: There are a number of different applications that could use heat pipes or loop heat pipes (LHPs) in the intermediate temperature range of 450 to 750 K, including space nuclear power system radiators, and high temperature electronics cooling. Potential working fluids include organic fluids, elements, and halides, with halides being the least understood, with only a few life tests conducted. Potential envelope materials for halide working fluids include pure aluminum, aluminum alloys, commercially pure (CP) titanium, titanium alloys, and corrosion resistant superalloys. Life tests were conducted with three halides (AlBr3, SbBr3, and TiCl4) and water in three different envelopes: two aluminum alloys (Al-5052, Al-6061) and Cp-2 titanium. The AlBr3 attacked the grain boundaries in the aluminum envelopes, and formed TiAl compounds in the titanium. The SbBr3 was incompatible with the only envelope material that it was tested with, Al-6061. TiCl4 and water were both compatible with CP2-titanium. A theoretical model was developed that uses electromotive force differences to predict the compatibility of halide working fluids with envelope materials. This theory predicts that iron, nickel, and molybdenum are good envelope materials, while aluminum and titanium halides are good working fluids. The model is in good agreement with results form previous life tests, as well as the current life tests.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Space Technology and Applications International Forum (STAIF 2007) Proceedings; 137-146|Space Technology and Applications International Forum (STAIF 2007); Feb 01, 2007 - Feb 28, 2007; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: In single bubble following it's rapid collapse each cycle of oscillation of an ultrasonic field. Since widely varying length and time scales affect the bubble dynamics and optical emission processes, it is difficult to anticipate the importance of the effects of gravity present for observations on earth. Our bubble is driven in an acoustically resonating cavity at it's first harmonic mode. The acoustical radiation pressure (Bjerknes force) will then keep it suspended in the center near the pressure antinode. When driven in a region where the diffusive processes balance the bubble it acts in a nonlinear but regular way, emitting a short (approx. 200ps) burst of light each acoustic cycle. Balancing the Bjerknes force with buoyancy, as in, we can see that the bubble should be displaced from the velocity node approximately 20m at normal gravity. Therefore, water flows past the bubble at the time of collapse. Gravitation also changes the ambient pressure at the bubble's location, as Delta.P = rho.g.h this gives a change of approximately -0.5% in our experiment when going from 1.8g to 0g. Studies of ambient pressure changes were also done in order to assess these effects. Inside a pressure sealed chamber a spherical glass cell is filled with distilled water which has been degassed to 120mmHg. A bubble is then trapped in the center and driven by a piezoelectric transducer at 32.2kHz attached to the side of the cell. An optical system is then set up to take strobbed video images along and light emission data simultaneously. Temperature, pressure, drive voltage, and listener voltage are also monitored. PMT output in Volts The radii of the bubbles for both experiment s are fit using the Rayleigh-Plesset equation and the acoustic drive amplitude and the ambient bubble radius are found. There is little change in the acoustic drive amplitude as we expect, since we are not varying the drive voltage. However. the ambient bubble radius goes up considerably. These changes (increased light output, increased maximum bubble radius, and increased ambient bubble radius) are also observed when the ambient pressure is varied in the laboratory by an amount similar to that due to gravitation. The changes in the ambient bubble radius and light output with a change in ambient pressure are predicted by the "dissociation hypothesis" and have been observed by other groups in the laboratory. It seems clear that buoyancy's effect on light output and bubble radius, are at best on the same order as the effects of ambient pressure.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Proceedings of the Fifth Microgravity Fluid Physics and Transport Phenomena Conference; 1532-1550
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...