ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: LY294002 ; wortmannin ; signal transduction ; tyrosine kinase ; mitogen ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Studies on a platelet-derived growth factor (PDGF) responsive osteosarcoma cell line, MG-63, were initiated to determine the effects of phosphatidylinositol (Ptdlns) 3-kinase inhibitors on serum-stimulated cell proliferation and PDGF-stimulated DNA replication, actin rearrangements, or Ptdlns 3-kinase activity. In a dose-dependent manner, the fungal metabolite wortmannin and a quercetin derivative, LY294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), inhibited serum-stimulated MG-63 cell proliferation. The mitogenic effects of PDGF on MG-63 cells, as determined by incorporation of [3H]-thymidine, were also substantially inhibited in the presence of 0.10 μM wortmannin or 10 μM LY294002. Furthermore, MG-63 cells stimulated by PDGF form distinct actin-rich, finger-like membrane projections which are completely inhibited by either 0.10 μM wortmannin or 10 μM LY294002. At these same concentrations, wortmannin and LY294002 were also effective at reducing levels of phosphatidylinositol 3-phosphate in PDGF-stimulated MG-63 cells. Treatment of these cells with increasing concentrations of wortmannin reduced the level of PDGF stimulated tyrosine phosphorylation of the PDGF receptor but did not significantly affect the amount of the Ptdlns 3-kinase regulatory subunit, p85, associated with the receptor. Additionally, pretreatment of cells with 0.250 μM wortmannin followed by stimulation with PDGF resulted in a slightly reduced level of receptor autokinase activity; however, similar treatment with 50 μM LY294002 did not affect the level of autokinase activity. These results demonstrate the effects of two different Ptdlns 3-kinase inhibitors on serum- and PDGF-stimulated MG-63 cell proliferation and PDGF-stimulated morphological changes and suggest a greater role for Ptdlns 3-kinase in these processes. J. Cell. Biochem. 64:182-195. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 15 (1993), S. 791-797 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The dauer larva is a specialized third-larval stage of Caenorhabditis elegans that is long-lived and resistant to environmental insult. The dauer larva is formed in response to a high external concentration of a constitu-tively secreted pheromone. Response to the dauer-inducing pheromone of C. elegans is a promising genetic model for metazoan chemosensory transduction. More than 20 genes have been identified that are required for normal pheromone response. The functions of these genes include production of the pheromone, exposure of sensory neuron endings to the environment, structural and functional integrity of those sensory endings, and the capacity of sensory neurons to make appropriate output. Genetic evidence suggests that two partially redundant sensory pathways act in concert to control dauer formation. At least two classes of chemosensory neurons, ADF and ASI, are implicated in the pheromone response. On the basis of on these findings, a speculative model for the pheromone response is proposed. In this model, the neurons ADF and ASI are pheromone sensors that repress dauer formation in the absence of pheromone and dere-press dauer formation in response to pheromone. It is currently unclear whether or not the two genetically defined sensory pathways both act in ADF and ASI.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-24
    Description: This manual describes the installation and execution of FUN3D (Fully-UNstructured three-dimensional CFD (Computational Fluid Dynamics) code) version 13.5, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2019-220271 , L-21013 , NF1676L-32825
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: COMSAC goals include increasing the acceptance of CFD as a viable tool for S&C predictions, as well as to focus CFD development and improvement towards the needs of the S&C community. We view this as a symbiotic relationship, with increasing improvement of CFD promoting increasing acceptance by the S&C community, and increasing acceptance spurring further improvements. In this presentation we want to provide an overview for the non CFD expert of current CFD strengths and weaknesses, as well as to highlight a few emerging capabilities that we feel will lead toward increased usefulness in S&C applications.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: COMSAC: Computational Methods for Stability and Control; 48-68; NASA/CP-2004-213028/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-21514 , AIAA Aerospace Sciences Meeting; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-20
    Description: Grid convergence studies are performed to establish reference solutions for benchmark three dimensional turbulent flows in support of the ongoing turbulence model verification and validation e ort at the Turbulence Modeling Resource website curated by NASA. The bench- mark cases are a subsonic flow around a hemisphere cylinder and a transonic flow around the ONERA M6 wing with a sharp trailing edge. The study applies widely-used computational fluid dynamics codes developed and supported at the NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions are computed for the Reynolds-Averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model on families of consistently-refined grids composed of different types of cells. Coarse-to- ne and code-to-code solution variation is described in detail.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-27447 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-10
    Description: Considerable progress over the past thirty years has been made in the development of large-scale computational fluid dynamics (CFD) solvers for the Euler and Navier-Stokes equations. Computations are used routinely to design the cruise shapes of transport aircraft through complex-geometry simulations involving the solution of 25-100 million equations; in this arena the number of wind-tunnel tests for a new design has been substantially reduced. However, simulations of the entire flight envelope of the vehicle, including maximum lift, buffet onset, flutter, and control effectiveness have not been as successful in eliminating the reliance on wind-tunnel testing. These simulations involve unsteady flows with more separation and stronger shock waves than at cruise. The main reasons limiting further inroads of CFD into the design process are: (1) the reliability of turbulence models; and (2) the time and expense of the numerical simulation. Because of the prohibitive resolution requirements of direct simulations at high Reynolds numbers, transition and turbulence modeling is expected to remain an issue for the near term. The focus of this paper addresses the latter problem by attempting to attain optimal efficiencies in solving the governing equations. Typically current CFD codes based on the use of multigrid acceleration techniques and multistage Runge-Kutta time-stepping schemes are able to converge lift and drag values for cruise configurations within approximately 1000 residual evaluations. An optimally convergent method is defined as having textbook multigrid efficiency (TME), meaning the solutions to the governing system of equations are attained in a computational work which is a small (less than 10) multiple of the operation count in the discretized system of equations (residual equations). In this paper, a distributed relaxation approach to achieving TME for Reynolds-averaged Navier-Stokes (RNAS) equations are discussed along with the foundations that form the basis of this approach. Because the governing equations are a set of coupled nonlinear conservation equations with discontinuities (shocks, slip lines, etc.) and singularities (flow- or grid-induced), the difficulties are many. This paper summarizes recent progress towards the attainment of TME in basic CFD simulations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2001-2570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2004-213031 , NIA-2004-01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2531 , 34th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2004-2531 , 34th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...