ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fluid Mechanics and Thermodynamics  (1)
  • Fluid Mechanics and Thermodynamics; Aerodynamics  (1)
  • 1
    Publication Date: 2019-08-06
    Description: Active flow control (AFC) subscale experiments were conducted at the Lucas Wind Tunnel of the California Institute of Technology. Tests were performed on a generic vertical tail model at low speeds. Fluidic oscillators were used at the trailing edge of the main element (vertical stabilizer) to redirect the flow over the rudder and delay or prevent flow separation. Side force increases in excess of 50% were achieved with a 2% momentum coefficient (C(sub )) input. The results indicated that a collective C(sub ) of about 1% could increase the side force by 3050%. This result is achieved by reducing the spanwise flow on the swept back wings that contributes to early flow separation near their tips. These experiments provided the technical backdrop to test the full-scale Boeing 757 vertical tail model equipped with a fluidic oscillator system at the National Full-scale Aerodynamics Complex 40-by 80-foot Wind Tunnel, NASA Ames Research Center. The C(sub ) is shown to be an important parameter for scaling a fluidic oscillator AFC system from subscale to full-scale wind tunnel tests. The results of these tests provided the required rationale to use a fluidic oscillator AFC configuration for a follow-on flight test on the Boeing 757 ecoDemonstrator.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NF1676L-29550 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 57; 8; 3322-3338
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This paper provides an overview of a research and development effort sponsored by the NASA Advanced Air Transport Technology Project to achieve the required high-lift performance using active flow control (AFC) on simple hinged flaps while reducing the cruise drag associated with the external mechanisms on slotted flaps of a generic modern transport aircraft. The removal of the external fairings for the Fowler flap mechanism could help to reduce drag by 3.3 counts. The main challenge is to develop an AFC system that can provide the necessary lift recovery on a simple hinged flap high-lift system while using the limited pneumatic power available on the aircraft. Innovative low-power AFC concepts will be investigated in the flap shoulder region. The AFC concepts being explored include steady blowing and unsteady blowing operating in the spatial and/or temporal domain. Both conventional and AFC-enabled high-lift configurations were designed for the current effort. The high-lift configurations share the cruise geometry that is based on the NASA Common Research Model, and therefore, are also open geometries. A 10%-scale High Lift Common Research Model (HL-CRM) is being designed for testing at the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel during fiscal year 2018. The overall project plan, status, HL-CRM configurations, and AFC objectives for the wind tunnel test are described.
    Keywords: Fluid Mechanics and Thermodynamics; Aerodynamics
    Type: NF1676L-24626 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...