ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • File format; File name; File size; off southwest Africa; Pourquoi Pas ? (2005); Regab_pockmark; Uniform resource locator/link to file; VICTOR; Victor6000 ROV; WACS  (1)
  • North Fiji basin  (1)
  • 1
    ISSN: 1573-0581
    Keywords: North Fiji basin ; back-arc basins ; spreading centers ; segmentation ; axial grabens ; axial volcanic highs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The South Pandora and the Tripartite Ridges are active spreading centers located in the northern part of the North Fiji Basin. These spreading centers were surveyed over a distance of 750 km during the NOFI cruise of R/V L'Atalante (August–September 1994) which was conducted in the frame of the french-japanese Newstarmer cooperation project. SIMRAD EM12-dual full coverage swath bathymetric and imagery data as well as airgun 6-channel seismic, magnetics and gravity profiles were recorded along and offaxis from 170°40′ E to 178° E. Dredging and piston coring were also performed along and off-axis. The axial domain of the South Pandora Ridge is divided into 5 first-order segments characterized by contrasted morphologies. The average width of the active domain is 20 km and corresponds either to bathymetric highs or to deep elongated grabens. The bathymetric highs are volcanic constructions, locally faulted and rifted, which can obstruct totally the axial valley. The grabens show the typical morphology of slow spreading axes, with two steep walls flanking a deep axial valley. Elongated lateral ridges may be present on both sides of the grabens. Numerous volcanoes, up to several kilometers in diameter, occur on both flanks of the South Pandora Ridge. The Tripartite Ridge consists of three main segments showing a sigmoid shape. Major changes in the direction of the active zones are observed at the segment discontinuities. These discontinuities show various geometrical patterns which suggest complex transform relay zones. Preliminary analysis of seismic reflection profiles suggest that the Tripartite Ridge is a very young feature which propagates into an older oceanic domain characterized by a significant sedimentary cover. By contrast, a very thin to absent sedimentary cover is observed about 100 km on both flanks of the South Pandora Ridge active axis. The magnetic anomaly profiles give evidence of long and continuous lineations, parallel to the South Pandora Ridge spreading axis. According to our preliminary interpretation, the spreading rate would have been very low (8 km/m.y. half rate) during the last 7 Ma. The South Pandora and Tripartite Ridges exhibit characteristics typical of active oceanic ridges: (1) a segmented pattern, with segments ranging from 80 to 100 km in length; (2) an axial tectonic and volcanic zone, 10 to 20 km wide; (3) well-organized magnetic lineations, parallel to the active axis; (4) clear signature on the free-air gravity anomaly map. However, no typical transform fault is observed; instead, complex relay zones are separating first-order segments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marcon, Yann; Ondreas, Helene; Sahling, Heiko; Bohrmann, Gerhard; Olu, Karine (2014): Fluid flow regimes and growth of a giant pockmark. Geology, 42(1), 63-66, https://doi.org/10.1130/G34801.1
    Publication Date: 2024-06-26
    Description: Pockmarks are seafloor depressions commonly associated with fluid escape from the seabed and are believed to contribute noticeably to the transfer of methane into the ocean and ultimately into the atmosphere. They occur in many different areas and geological contexts, and vary greatly in size and shape. Nevertheless, the mechanisms of pockmark growth are still largely unclear. Still, seabed methane emissions contribute to the global carbon budget, and understanding such processes is critical to constrain future quantifications of seabed methane release at local and global scales. The giant Regab pockmark (9°42.6' E, 5°47.8' S), located at 3160 m water depth near the Congo deep-sea channel (offshore southwestern Africa), was investigated with state-of-the-art mapping devices mounted on IFREMER's (French Research Institute for Exploitation of the Sea) remotely operated vehicle (ROV) Victor 6000. ROV-borne micro-bathymetry and backscatter data of the entire structure, a high-resolution photo-mosaic covering 105,000 m2 of the most active area, sidescan mapping of gas emissions, and maps of faunal distribution as well as of carbonate crust occurrence are combined to provide an unprecedented detailed view of a giant pockmark. All data sets suggest that the pockmark is composed of two very distinctive zones in terms of seepage intensity. We postulate that these zones are the surface expression of two fluid flow regimes in the subsurface: focused flow through a fractured medium and diffuse flow through a porous medium. We conclude that the growth of giant pockmarks is controlled by self-sealing processes and lateral spreading of rising fluids. In particular, partial redirection of fluids through fractures in the sediments can drive the pockmark growth in preferential directions.
    Keywords: File format; File name; File size; off southwest Africa; Pourquoi Pas ? (2005); Regab_pockmark; Uniform resource locator/link to file; VICTOR; Victor6000 ROV; WACS
    Type: Dataset
    Format: text/tab-separated-values, 8 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...