ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-03-30
    Description: DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methylcytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and so far no base-resolution maps exist to support and refine it. Here we generate genome-scale DNA methylation maps in mouse gametes and from the zygote through post-implantation. We find that the oocyte already exhibits global hypomethylation, particularly at specific families of long interspersed element 1 and long terminal repeat retroelements, which are disparately methylated between gametes and have lower methylation values in the zygote than in sperm. Surprisingly, the oocyte contributes a unique set of differentially methylated regions (DMRs)--including many CpG island promoters--that are maintained in the early embryo but are lost upon specification and absent from somatic cells. In contrast, sperm-contributed DMRs are largely intergenic and become hypermethylated after the blastocyst stage. Our data provide a genome-scale, base-resolution timeline of DNA methylation in the pre-specified embryo, when this epigenetic modification is most dynamic, before returning to the canonical somatic pattern.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331945/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331945/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Zachary D -- Chan, Michelle M -- Mikkelsen, Tarjei S -- Gu, Hongcang -- Gnirke, Andreas -- Regev, Aviv -- Meissner, Alexander -- 1P50HG006193-01/HG/NHGRI NIH HHS/ -- 5DP1OD003958/OD/NIH HHS/ -- 5RC1AA019317/AA/NIAAA NIH HHS/ -- DP1 CA174427/CA/NCI NIH HHS/ -- DP1 OD003958/OD/NIH HHS/ -- DP1 OD003958-04/OD/NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P50 HG006193/HG/NHGRI NIH HHS/ -- P50 HG006193-01/HG/NHGRI NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Mar 28;484(7394):339-44. doi: 10.1038/nature10960.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22456710" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CpG Islands/genetics ; *DNA Methylation/genetics ; Embryo, Mammalian/*embryology/*metabolism ; Embryonic Development/*genetics ; Female ; Fertilization/genetics ; Genome/genetics ; Long Interspersed Nucleotide Elements/genetics ; Male ; Mice ; Oocytes/metabolism ; Spermatozoa/metabolism ; Terminal Repeat Sequences/genetics ; Zygote/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-07-01
    Description: Deletion of the promoter and the first exon of the DNA polymerase beta gene (pol beta) in the mouse germ line results in a lethal phenotype. With the use of the bacteriophage-derived, site-specific recombinase Cre in a transgenic approach, the same mutation can be selectively introduced into a particular cellular compartment-in this case, T cells. The impact of the mutation on those cells can then be analyzed because the mutant animals are viable.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, H -- Marth, J D -- Orban, P C -- Mossmann, H -- Rajewsky, K -- New York, N.Y. -- Science. 1994 Jul 1;265(5168):103-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genetics, University of Cologne, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8016642" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA Nucleotidyltransferases/genetics/metabolism ; DNA Polymerase I/*genetics/metabolism ; Female ; *Gene Deletion ; Genetic Engineering/*methods ; Homozygote ; *Integrases ; Male ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mutation ; Recombination, Genetic ; Stem Cells/enzymology ; T-Lymphocytes/*enzymology ; Transfection ; *Viral Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...