ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-12
    Description: Cells with loss of BRCA2 function are defective in homologous recombination (HR) and are highly sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP), which provides the basis for a new therapeutic approach. Here we show that resistance to PARP inhibition can be acquired by deletion of a mutation in BRCA2. We derived PARP-inhibitor-resistant (PIR) clones from the human CAPAN1 pancreatic cancer cell line, which carries the protein-truncating c.6174delT frameshift mutation. PIR clones could form DNA-damage-induced RAD51 nuclear foci and were able to limit genotoxin-induced genomic instability, both hallmarks of a competent HR pathway. New BRCA2 isoforms were expressed in the resistant lines as a result of intragenic deletion of the c.6174delT mutation and restoration of the open reading frame (ORF). Reconstitution of BRCA2-deficient cells with these revertant BRCA2 alleles rescued PARP inhibitor sensitivity and HR deficiency. Most of the deletions in BRCA2 were associated with small tracts of homology, and possibly arose from error-prone repair caused by BRCA2 deficiency. Similar ORF-restoring mutations were present in carboplatin-resistant ovarian tumours from c.6174delT mutation carriers. These observations have implications for understanding drug resistance in BRCA mutation carriers as well as in defining functionally important domains within BRCA2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Edwards, Stacey L -- Brough, Rachel -- Lord, Christopher J -- Natrajan, Rachael -- Vatcheva, Radost -- Levine, Douglas A -- Boyd, Jeff -- Reis-Filho, Jorge S -- Ashworth, Alan -- A8363/Cancer Research UK/United Kingdom -- England -- Nature. 2008 Feb 28;451(7182):1111-5. doi: 10.1038/nature06548. Epub 2008 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18264088" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Alleles ; Amino Acid Sequence ; BRCA2 Protein/deficiency/genetics ; Base Sequence ; Carboplatin/pharmacology ; Cell Line, Tumor ; Chromosome Aberrations/chemically induced ; Drug Resistance, Neoplasm/*drug effects/*genetics ; Female ; Fluorobenzenes/pharmacology ; Gene Expression Regulation, Neoplastic ; *Genes, BRCA2 ; Humans ; Middle Aged ; Mitomycin/pharmacology ; Molecular Sequence Data ; Mutation/genetics ; Open Reading Frames/genetics ; Ovarian Neoplasms/drug therapy/genetics ; Pancreatic Neoplasms/drug therapy/genetics/pathology ; Phthalazines/pharmacology ; Poly(ADP-ribose) Polymerase Inhibitors ; Recombination, Genetic/genetics ; Sequence Deletion/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-12-18
    Description: Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 x 10(-5)), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 x 10(-4)) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 x 10(-9)). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759028/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3759028/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruark, Elise -- Snape, Katie -- Humburg, Peter -- Loveday, Chey -- Bajrami, Ilirjana -- Brough, Rachel -- Rodrigues, Daniel Nava -- Renwick, Anthony -- Seal, Sheila -- Ramsay, Emma -- Duarte, Silvana Del Vecchio -- Rivas, Manuel A -- Warren-Perry, Margaret -- Zachariou, Anna -- Campion-Flora, Adriana -- Hanks, Sandra -- Murray, Anne -- Ansari Pour, Naser -- Douglas, Jenny -- Gregory, Lorna -- Rimmer, Andrew -- Walker, Neil M -- Yang, Tsun-Po -- Adlard, Julian W -- Barwell, Julian -- Berg, Jonathan -- Brady, Angela F -- Brewer, Carole -- Brice, Glen -- Chapman, Cyril -- Cook, Jackie -- Davidson, Rosemarie -- Donaldson, Alan -- Douglas, Fiona -- Eccles, Diana -- Evans, D Gareth -- Greenhalgh, Lynn -- Henderson, Alex -- Izatt, Louise -- Kumar, Ajith -- Lalloo, Fiona -- Miedzybrodzka, Zosia -- Morrison, Patrick J -- Paterson, Joan -- Porteous, Mary -- Rogers, Mark T -- Shanley, Susan -- Walker, Lisa -- Gore, Martin -- Houlston, Richard -- Brown, Matthew A -- Caufield, Mark J -- Deloukas, Panagiotis -- McCarthy, Mark I -- Todd, John A -- Breast and Ovarian Cancer Susceptibility Collaboration -- Wellcome Trust Case Control Consortium -- Turnbull, Clare -- Reis-Filho, Jorge S -- Ashworth, Alan -- Antoniou, Antonis C -- Lord, Christopher J -- Donnelly, Peter -- Rahman, Nazneen -- 068545/Z/02/Wellcome Trust/United Kingdom -- 083948/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 090532/Z/09/Z/Wellcome Trust/United Kingdom -- 091157/Wellcome Trust/United Kingdom -- 095552/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 100140/Wellcome Trust/United Kingdom -- 11174/Cancer Research UK/United Kingdom -- C12292/A11174/Cancer Research UK/United Kingdom -- CZB/4/540/Chief Scientist Office/United Kingdom -- ETM/137/Chief Scientist Office/United Kingdom -- ETM/75/Chief Scientist Office/United Kingdom -- G0000934/Medical Research Council/United Kingdom -- G0600329/Medical Research Council/United Kingdom -- G0800759/Medical Research Council/United Kingdom -- G0900747 91070/Medical Research Council/United Kingdom -- G9521010/Medical Research Council/United Kingdom -- MR/K006584/1/Medical Research Council/United Kingdom -- England -- Nature. 2013 Jan 17;493(7432):406-10. doi: 10.1038/nature11725. Epub 2012 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics & Epidemiology, The Institute of Cancer Research, Sutton SM2 5NG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23242139" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Breast Neoplasms/*genetics ; Cluster Analysis ; Exons ; Female ; Genetic Predisposition to Disease/*genetics ; Humans ; Isoenzymes/genetics ; Lymphocytes/metabolism ; *Mosaicism ; *Mutation ; Ovarian Neoplasms/*genetics ; Phosphoprotein Phosphatases/*genetics ; Sequence Analysis, DNA ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...