ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-13
    Description: Sound communication plays a vital role in frog reproduction, in which vocal advertisement is generally the domain of males. Females are typically silent, but in a few anuran species they can produce a feeble reciprocal call or rapping sounds during courtship. Males of concave-eared torrent frogs (Odorrana tormota) have demonstrated ultrasonic communication capacity. Although females of O. tormota have an unusually well-developed vocal production system, it is unclear whether or not they produce calls or are only passive partners in a communication system dominated by males. Here we show that before ovulation, gravid females of O. tormota emit calls that are distinct from males' advertisement calls, having higher fundamental frequencies and harmonics and shorter call duration. In the field and in a quiet, darkened indoor arena, these female calls evoke vocalizations and extraordinarily precise positive phonotaxis (a localization error of 〈1 degrees ), rivalling that of vertebrates with the highest localization acuity (barn owls, dolphins, elephants and humans). The localization accuracy of O. tormota is remarkable in light of their small head size (interaural distance of 〈1 cm), and suggests an additional selective advantage of high-frequency hearing beyond the ability to avoid masking by low-frequency background noise.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, Jun-Xian -- Feng, Albert S -- Xu, Zhi-Min -- Yu, Zu-Lin -- Arch, Victoria S -- Yu, Xin-Jian -- Narins, Peter M -- England -- Nature. 2008 Jun 12;453(7197):914-6. doi: 10.1038/nature06719. Epub 2008 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China. shenjx@sun5.ibp.ac.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18469804" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; China ; *Courtship ; Female ; Humans ; Male ; Motor Activity/*physiology ; Ranidae/*physiology ; *Sex Characteristics ; Sound ; *Ultrasonics ; Vocalization, Animal/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-01-26
    Description: Epigenetic reprogramming including demethylation of DNA occurs in mammalian primordial germ cells (PGCs) and in early embryos, and is important for the erasure of imprints and epimutations, and the return to pluripotency. The extent of this reprogramming and its molecular mechanisms are poorly understood. We previously showed that the cytidine deaminases AID and APOBEC1 can deaminate 5-methylcytosine in vitro and in Escherichia coli, and in the mouse are expressed in tissues in which demethylation occurs. Here we profiled DNA methylation throughout the genome by unbiased bisulphite next generation sequencing in wild-type and AID-deficient mouse PGCs at embryonic day (E)13.5. Wild-type PGCs revealed marked genome-wide erasure of methylation to a level below that of methylation deficient (Np95(-/-), also called Uhrf1(-/-)) embryonic stem cells, with female PGCs being less methylated than male ones. By contrast, AID-deficient PGCs were up to three times more methylated than wild-type ones; this substantial difference occurred throughout the genome, with introns, intergenic regions and transposons being relatively more methylated than exons. Relative hypermethylation in AID-deficient PGCs was confirmed by analysis of individual loci in the genome. Our results reveal that erasure of DNA methylation in the germ line is a global process, hence limiting the potential for transgenerational epigenetic inheritance. AID deficiency interferes with genome-wide erasure of DNA methylation patterns, indicating that AID has a critical function in epigenetic reprogramming and potentially in restricting the inheritance of epimutations in mammals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965733/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2965733/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popp, Christian -- Dean, Wendy -- Feng, Suhua -- Cokus, Shawn J -- Andrews, Simon -- Pellegrini, Matteo -- Jacobsen, Steven E -- Reik, Wolf -- G0700098/Medical Research Council/United Kingdom -- R37 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398-11/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- England -- Nature. 2010 Feb 25;463(7284):1101-5. doi: 10.1038/nature08829.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20098412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cytidine Deaminase/*deficiency/genetics/*metabolism ; *DNA Methylation ; DNA Transposable Elements/genetics ; Embryo, Mammalian/cytology/embryology/metabolism ; Epigenesis, Genetic/genetics ; Exons/genetics ; Female ; *Genome/genetics ; Germ Cells/enzymology/*metabolism ; Introns/genetics ; Male ; Mice ; Mice, Inbred C57BL ; Nuclear Proteins/deficiency/genetics ; Octamer Transcription Factor-3/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-03
    Description: Residents of the Tibetan Plateau show heritable adaptations to extreme altitude. We sequenced 50 exomes of ethnic Tibetans, encompassing coding sequences of 92% of human genes, with an average coverage of 18x per individual. Genes showing population-specific allele frequency changes, which represent strong candidates for altitude adaptation, were identified. The strongest signal of natural selection came from endothelial Per-Arnt-Sim (PAS) domain protein 1 (EPAS1), a transcription factor involved in response to hypoxia. One single-nucleotide polymorphism (SNP) at EPAS1 shows a 78% frequency difference between Tibetan and Han samples, representing the fastest allele frequency change observed at any human gene to date. This SNP's association with erythrocyte abundance supports the role of EPAS1 in adaptation to hypoxia. Thus, a population genomic survey has revealed a functionally important locus in genetic adaptation to high altitude.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711608/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711608/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yi, Xin -- Liang, Yu -- Huerta-Sanchez, Emilia -- Jin, Xin -- Cuo, Zha Xi Ping -- Pool, John E -- Xu, Xun -- Jiang, Hui -- Vinckenbosch, Nicolas -- Korneliussen, Thorfinn Sand -- Zheng, Hancheng -- Liu, Tao -- He, Weiming -- Li, Kui -- Luo, Ruibang -- Nie, Xifang -- Wu, Honglong -- Zhao, Meiru -- Cao, Hongzhi -- Zou, Jing -- Shan, Ying -- Li, Shuzheng -- Yang, Qi -- Asan -- Ni, Peixiang -- Tian, Geng -- Xu, Junming -- Liu, Xiao -- Jiang, Tao -- Wu, Renhua -- Zhou, Guangyu -- Tang, Meifang -- Qin, Junjie -- Wang, Tong -- Feng, Shuijian -- Li, Guohong -- Huasang -- Luosang, Jiangbai -- Wang, Wei -- Chen, Fang -- Wang, Yading -- Zheng, Xiaoguang -- Li, Zhuo -- Bianba, Zhuoma -- Yang, Ge -- Wang, Xinping -- Tang, Shuhui -- Gao, Guoyi -- Chen, Yong -- Luo, Zhen -- Gusang, Lamu -- Cao, Zheng -- Zhang, Qinghui -- Ouyang, Weihan -- Ren, Xiaoli -- Liang, Huiqing -- Zheng, Huisong -- Huang, Yebo -- Li, Jingxiang -- Bolund, Lars -- Kristiansen, Karsten -- Li, Yingrui -- Zhang, Yong -- Zhang, Xiuqing -- Li, Ruiqiang -- Li, Songgang -- Yang, Huanming -- Nielsen, Rasmus -- Wang, Jun -- Wang, Jian -- R01 HG003229/HG/NHGRI NIH HHS/ -- R01 MH084695/MH/NIMH NIH HHS/ -- R01HG003229/HG/NHGRI NIH HHS/ -- R01MHG084695/PHS HHS/ -- New York, N.Y. -- Science. 2010 Jul 2;329(5987):75-8. doi: 10.1126/science.1190371.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BGI-Shenzhen, Shenzhen 518083, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20595611" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/*genetics ; *Altitude ; Asian Continental Ancestry Group/genetics ; Basic Helix-Loop-Helix Transcription Factors/*genetics/physiology ; Bayes Theorem ; China ; Erythrocyte Count ; Ethnic Groups/genetics ; *Exons ; Female ; Gene Frequency ; Genetic Association Studies ; *Genome, Human ; Hemoglobins/analysis ; Humans ; Male ; Oxygen/blood ; Polymorphism, Single Nucleotide ; *Selection, Genetic ; Sequence Analysis, DNA ; Tibet
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-10-30
    Description: Epigenetic modifications of the genome are generally stable in somatic cells of multicellular organisms. In germ cells and early embryos, however, epigenetic reprogramming occurs on a genome-wide scale, which includes demethylation of DNA and remodeling of histones and their modifications. The mechanisms of genome-wide erasure of DNA methylation, which involve modifications to 5-methylcytosine and DNA repair, are being unraveled. Epigenetic reprogramming has important roles in imprinting, the natural as well as experimental acquisition of totipotency and pluripotency, control of transposons, and epigenetic inheritance across generations. Small RNAs and the inheritance of histone marks may also contribute to epigenetic inheritance and reprogramming. Reprogramming occurs in flowering plants and in mammals, and the similarities and differences illuminate developmental and reproductive strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989926/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989926/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Suhua -- Jacobsen, Steven E -- Reik, Wolf -- G0700098/Medical Research Council/United Kingdom -- GM60398/GM/NIGMS NIH HHS/ -- R37 GM060398/GM/NIGMS NIH HHS/ -- R37 GM060398-10/GM/NIGMS NIH HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2010 Oct 29;330(6004):622-7. doi: 10.1126/science.1190614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21030646" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/embryology/*genetics ; Cellular Reprogramming ; *DNA Methylation ; DNA Transposable Elements ; Embryo, Mammalian/metabolism/physiology ; Embryo, Nonmammalian/metabolism/physiology ; Embryonic Development ; *Epigenesis, Genetic ; Female ; Gene Expression Regulation, Developmental ; Gene Silencing ; Genomic Imprinting ; Germ Cells/growth & development/metabolism ; Histones/*metabolism ; Male ; Mammals/embryology/*genetics ; Protein Processing, Post-Translational
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...