ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Feces  (1)
  • dissolved organic nitrogen  (1)
  • 1
    ISSN: 1440-1703
    Keywords: Decomposition ; Feces ; Nutrient transfer ; Thalassia hemprichii ; Tripneustes gratilla
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The sea urchin,Tripneustes gratilla, which feeds mainly on living leaves of the seagrass,Thalassia hemprichii, was studied in its habitat on the southern coast of Papua New Guinea, and its roles in decomposition and nutrient cycling in a seagrass bed were assessed through the excretion of ammonium and metabolism of feces produced by the sea urchin. Carbon content of the fresh feces (21% of dry weight) was similar to that of intact dead leaves of the same species (22–23%). Carbon/nitrogen and carbon/phosphorus ratios of the feces (21.7 and 466, respectively), however, were significantly lower than those of the dead leaves (25.9–27.7 and 656–804, respectively), indicating that the feces retain more nitrogen and phosphorus in comparison with carbon. Net consumption of ammonium and orthophosphate typically concurred with oxygen consumption during dark incubation of both the dead leaves and the sea urchin feces. Compared with the same oxygen consumption rate, however, the dead leaves consumed more orthophosphate than the feces. Under sunlight, dead leaves showed a net accumulation of carbon by epiphytic algae, while the feces showed a carbon loss. Ammonium excretion by this sea urchin (1.7–5.4 mg nitrogen/individual/day) would thus appear to make a significant contribution to nitrogen recycling since biological communities associated with dead leaves and sea urchin feces tend to demand an external supply of nitrogen, such as ammonium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 386 (1998), S. 37-44 
    ISSN: 1573-5117
    Keywords: ammonium ; dissolved organic nitrogen ; filter-feeding bivalve ; polychaeta ; Lake Shinji
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Concentrations of sediment organic nitrogen, dissolved inorganic nitrogen (ammonium, nitrite and nitrate), and dissolved organic nitrogen (DON) in sediments were measured at two sites in a eutrophic estuarine lagoon. One is a shallow aerobic site where macrobenthos are abundant and the other is a deep anaerobic site devoid of macrobenthos. Four species of macrobenthos (Bivalvia: Corbicula japonica, Annelida: Notomastus sp., Neanthes japonica and Oligochaeta sp.) were found in 8 sandy sediment cores collected at a shallow site in three succcessive summers. DON (170–1500 μg atom N l-1) was the major constituent of dissolved nitrogen with 10 times greater concentration than ammonium (55–180 μg atom N l-1) and 1000 times greater than nitrate (0.14–5.9 μg atom N l-1) and nitrite (0.21–1.4 μg atom N l-1). The ammonium content in anaerobic muddy sediments at the deep site (210–350 μg atom N l-1) was higher than in aerobic sandy sediments, whereas DON was higher in aerobic sediments than anaerobic sediments (90–240 μg atom N l-1). In aerobic sediments, depth profiles of DIN were nearly constant whereas DON was mostly highest at the surface. On the other hand, the increase of DON and ammonium was observed where macrobenthos was found. The occurrence of macrobenthos and high content of DON and ammonium content in the layers of sediment may suggest the influence of macrobenthos in the partitioning of nitrogen species through their motion and excretion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...