ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Current and future calculations of nonequilibrium shock layers require the use of a very large number of equations, due to a multiplicity of chemical species, excited states, and internal energy modes. The computational cost associated with the use of standard implicit methods becomes prohibitive; it is therefore desirable to examine the potential of several methods and determine if any can be projected to be more efficient and accurate for large systems of equations. Here, the performance of several implicit schemes on several simple practical examples of reacting flows is examined. The Euler equations are solved by three different implicit methods, and two methods of coupling between the fluid dynamics and the chemistry are studied. Several cases of stiffness are considered and both 1D and 2D examples are computed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 92-2973
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The equations governing the multidimensional flow of a reacting mixture of thermally perfect gasses were derived. The modeling procedures for the various terms of the conservation laws are discussed. A numerical algorithm, based on the finite-volume approach, to solve these conservation equations was developed. The advantages and disadvantages of the present numerical scheme are discussed from the point of view of accuracy, computer time, and memory requirements. A simple one-dimensional model problem was solved to prove the feasibility and accuracy of the algorithm. A computer code implementing the above algorithm was developed and is presently being applied to simple geometries and conditions. Once the code is completely debugged and validated, it will be used to compute the complete unsteady flow field around the Aeroassist Flight Experiment (AFE) body.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-186946 , NAS 1.26:186946
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...