ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European journal of clinical pharmacology 40 (1991), S. 603-607 
    ISSN: 1432-1041
    Keywords: Gallopamil ; protein binding ; albumin ; α1-acid glycoprotein ; interspecies differences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Medicine
    Notes: Summary There is little information about the factors which influence drug protein binding between species. We have therefore investigatived the role of pH on the binding of gallopamil, a calcium channel antagonist known to exhibit pH-sensitive binding, among four species, human, baboon, bovine, and canine. We used pure protein solutions of α1 acid glycoprotein (AAG) (60 mg·l−1), albumin (45 gm·l−1), and their combination and three values of pH, 7.0, 7.4, and 8.0. Gallopamil protein binding was determined over a concentration range of 2.0×10−7mol·l−1 to 2.1×10−3mol·l−1 using equilibrium dialysis. Gallopamil binding in all solutions was best described using a two binding site model in the combination solution and a one binding site model in the pure solutions. pH did not affect the number of identical binding sites. However, the influence of pH on gallopamil binding was species specific. Increasing the pH from 7.0 to 8.0 influenced binding affinity differently between species. There were directionally similar changes in unbound fraction at a gallopamil concentration of 2×10−7mol·l−1 as pH increased, although there were species differences in the degree of change. In protein solutions containing both AAG and albumin a reduction in pH from 7.4 to 7.0 resulted in species-specific increases in the unbound fraction. Increasing the pH from 7.4 to 8.0 again resulted in species-specific reductions in the unbound fraction of gallopamil. Similar changes were seen when pure AAG or albumin solutions were used, indicating species variance in both gallopamil protein binding and the effect of pH on binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: This work is an extension of a project conducted at the previous CTR summer program and was reported by Chen et al. (1990). In that program, the geometry and topology of the dissipating motions in a variety of shear flows was examined. All data was produced by direct numerical simulations (DNS). The partial derivatives of the velocity field were determined at every grid point in the flow and various invariants and related quantities were computed from the velocity gradient tensor. Motions characterized by high rates of kinetic energy dissipation and high enstrophy were of particular interest. Scatter diagrams of the invariants were mapped out and interesting and unexpected patterns were seen. Each type of shear layer produced its own characteristic scatter plot. In the present project, attention is focused on the incompressible plane mixing layer, and the scatter diagrams are replaced with more useful joint probability density contours. Comparison of the topology of the dissipating motions of flows at different Reynolds numbers are made. Also, plane mixing layers at the same Reynolds number but with different initial conditions are compared.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 4: Proceedings of the 1992 Summer Program; p 101-121
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A preliminary investigation of the geometry of flow patterns in numerically simulated compressible and incompressible mixing layers was carried out using 3-D critical point methodology. Motions characterized by high rates of kinetic energy dissipation and/or high enstrophy were of particular interest. In the approach the partial derivatives of the velocity field are determined at every point in the flow. These are used to construct the invariants of the velocity gradient tensor and the rate-of-strain tensor (P, Q, R, and P(sub s), Q(sub s), R(sub s) respectively). For incompressible flow the first invariant is zero. For the conditions of the compressible simulation, the first invariant is found to be everywhere small, relative to the second and third invariants, and so in both cases the local topology at a point is mainly determined by the second and third invariants. The data at every grid point is used to construct scatter plots of Q versus R and Q(sub s) versus R(sub s). Most points map to a cluster near the origin in Q-R space. However, fine scale motions, that is motions which are characterized by velocity derivatives which scale with the square root of R(sub delta), tend to map to regions which lie far from the origin. Definite trends are observed for motions characterized by high enstrophy and/or high dissipation. The observed trends suggest that, for these motions, the second and third invariants of the velocity gradient and rate-of-strain tensors are strongly correlated. The second and third invariants of the rate-of-strain tensor are related by K(-Q(sub s))(exp 3/2), which is consistent with the above scaling of velocity derivatives. The quantity K appears to depend on Reynolds number with an upper limit K = 2(the square root of 3)/9 corresponding to locally axisymmetric flow. For both the compressible and incompressible mixing layer, regions corresponding to high rates of dissipation are found to be characterized by comparable magnitudes of R(sub ij)R(sub ij) and S(sub ij)S(sub ij). For the incompressible mixing layer, regions characterized by the highest values of enstrophy are found to have relatively low strain rates.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 3: Proceedings of the 1990 Summer Program; p 139-161
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Theoretical and experimental results of studies to determine the flow parameters and structures of plane mixing layers are reported. Smoke visualization, combined with hot-wire anemometry, sheets of laser light, and photography were used to gather data from the wall flow. The behavior of vortex rods was examined, noting that the rods persisted only if new vortex energy was supplied from the sublayer. A power spectral density was defined for the velocity fluctuations, as was a hierarchy of velocity scales for geometrically similar vortices. The length scale grows linearly with downstream distance, where the flow structures are fed by longitudinal vortices. A model is developed for vortex pairing in sequential order from the bottom of the mixing layer outward in a repetitive process involving vortex stretching. The model is actually a migration strategy that satisfies the flow self-preservation constraints.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Vortex motion; Colloquium; Nov 01, 1982; Goettingen
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...