ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The approach to thermal analysis described by this paper is a technique that incorporates Computer Aided Design (CAD) and Computer Aided Engineering (CAE) to develop a thermal model that has the advantages of Finite Element Methods (FEM) without abandoning the unique advantages of Finite Difference Methods (FDM) in the analysis of thermal systems. The incorporation of existing CAD geometry, the powerful use of a pre and post processor and the ability to do interdisciplinary analysis, will be described.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Fourth Annual Thermal and Fluids Analysis Workshop; p 109-115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This paper presents viewgraphs on the low frequency high amplitude temperature oscillations observed in loop heat pipe operations. The topics include: 1) Proposed Theory; 2) Test Loop and Test Results; and 3) Effects of Various Parameters. The author also presents a short summary on the conditiions that must be met in order to sustain a low frequency high amplitude temperature oscillation.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Two-Phase Thermal Control Technology Workshop 2003; Sep 15, 2003 - Sep 17, 2003; Noordwijk; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Tropospheric Emission Spectrometer (TES) instrument heat rejection system has been operating in space for nearly 8 years since launched on NASA's EOS Aura Spacecraft. The instrument is an infrared imaging fourier transform spectrometer with spectral coverage of 3.2 to 15.4 microns. The loop heat pipe (LHP) based heat rejection system manages all of the instrument components waste heat including the two mechanical cryocoolers and their drive electronics. Five propylene LHPs collect and transport the instrument waste heat to the near room temperature nadir viewing radiators. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. Focal plane decontamination cycles require power cycling both cryocoolers which also requires the two cryocooler LHPs to turn off and on during each cycle. To date, the cryocooler LHPs have undergone 24 start-ups in orbit successfully. This paper reports on the TES cryocooler loop heat pipe based heat rejection system performance. After a brief overview of the instrument thermal design, the paper presents detailed data on the highly successful space operation of the loop heat pipes since instrument turn-on in 2004. The data shows that the steady-state and transient operation of the LHPs has not changed since 2004 and shows consistent and predictable performance. The LHP based heat rejection system has provided a nearly constant heat rejection heat sink for all of its equipment which has led to exceptional overall instrument performance with world class science.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 42nd International Conference on Environmental Systems; Feb 13, 2012 - Feb 15, 2012; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A fluid pump assembly includes a rotatable component that can be rotated about an axis and a static vane assembly located adjacent to the rotatable component. The static vane assembly includes a circumferential surface axially spaced from the rotatable component, and one or more vanes extending from the circumferential surface toward the rotatable component. The one or more vanes are configured to produce a radial load on the rotatable component when the rotatable component is rotating about the axis and a fluid is present between the static vane assembly and the rotatable component.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 2012 Spacecraft Thermal Control Workshop; Mar 20, 2012; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: An analysis of the single-blow transient testing technique for heat exchanger surfaces is made for perforated plate and similar discontinuous surfaces. The model assumes that there is no temperature variation across each plate, and allows for axial conduction in spacers: the resulting axial fluid temperature profile is discontinuous, rather than the usual continuous profile. Numerical solutions are obtained to the resulting set of coupled first-order differential equations for a step change in inlet fluid temperature. Results are presented in tabular form, which allow the heat transfer coefficients to be calculated from test data using the maximum slope technique.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 33; 1969-197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...