ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-05-25
    Description: CD8(+) T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8(+) T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8(+) T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I- and class II-restricted CD8(+) T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8(+) T cell epitope recognition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816976/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3816976/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hansen, Scott G -- Sacha, Jonah B -- Hughes, Colette M -- Ford, Julia C -- Burwitz, Benjamin J -- Scholz, Isabel -- Gilbride, Roxanne M -- Lewis, Matthew S -- Gilliam, Awbrey N -- Ventura, Abigail B -- Malouli, Daniel -- Xu, Guangwu -- Richards, Rebecca -- Whizin, Nathan -- Reed, Jason S -- Hammond, Katherine B -- Fischer, Miranda -- Turner, John M -- Legasse, Alfred W -- Axthelm, Michael K -- Edlefsen, Paul T -- Nelson, Jay A -- Lifson, Jeffrey D -- Fruh, Klaus -- Picker, Louis J -- P01 AI094417/AI/NIAID NIH HHS/ -- P51 OD 011092/OD/NIH HHS/ -- R01 AI059457/AI/NIAID NIH HHS/ -- R01 AI060392/AI/NIAID NIH HHS/ -- U24 OD010850/OD/NIH HHS/ -- New York, N.Y. -- Science. 2013 May 24;340(6135):1237874. doi: 10.1126/science.1237874.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23704576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CD8-Positive T-Lymphocytes/*immunology ; Cytokines/immunology ; Cytomegalovirus/genetics/*immunology ; Epitopes, T-Lymphocyte/*immunology ; Female ; Genetic Vectors/genetics/*immunology ; Histocompatibility Antigens Class II/immunology ; Humans ; Macaca mulatta ; Male ; Membrane Glycoproteins/genetics ; SAIDS Vaccines/administration & dosage/*immunology ; Viral Envelope Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-12
    Description: Myocardial infarction, a leading cause of death in the Western world, usually occurs when the fibrous cap overlying an atherosclerotic plaque in a coronary artery ruptures. The resulting exposure of blood to the atherosclerotic material then triggers thrombus formation, which occludes the artery. The importance of genetic predisposition to coronary artery disease and myocardial infarction is best documented by the predictive value of a positive family history. Next-generation sequencing in families with several affected individuals has revolutionized mutation identification. Here we report the segregation of two private, heterozygous mutations in two functionally related genes, GUCY1A3 (p.Leu163Phefs*24) and CCT7 (p.Ser525Leu), in an extended myocardial infarction family. GUCY1A3 encodes the alpha1 subunit of soluble guanylyl cyclase (alpha1-sGC), and CCT7 encodes CCTeta, a member of the tailless complex polypeptide 1 ring complex, which, among other functions, stabilizes soluble guanylyl cyclase. After stimulation with nitric oxide, soluble guanylyl cyclase generates cGMP, which induces vasodilation and inhibits platelet activation. We demonstrate in vitro that mutations in both GUCY1A3 and CCT7 severely reduce alpha1-sGC as well as beta1-sGC protein content, and impair soluble guanylyl cyclase activity. Moreover, platelets from digenic mutation carriers contained less soluble guanylyl cyclase protein and consequently displayed reduced nitric-oxide-induced cGMP formation. Mice deficient in alpha1-sGC protein displayed accelerated thrombus formation in the microcirculation after local trauma. Starting with a severely affected family, we have identified a link between impaired soluble-guanylyl-cyclase-dependent nitric oxide signalling and myocardial infarction risk, possibly through accelerated thrombus formation. Reversing this defect may provide a new therapeutic target for reducing the risk of myocardial infarction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Erdmann, Jeanette -- Stark, Klaus -- Esslinger, Ulrike B -- Rumpf, Philipp Moritz -- Koesling, Doris -- de Wit, Cor -- Kaiser, Frank J -- Braunholz, Diana -- Medack, Anja -- Fischer, Marcus -- Zimmermann, Martina E -- Tennstedt, Stephanie -- Graf, Elisabeth -- Eck, Sebastian -- Aherrahrou, Zouhair -- Nahrstaedt, Janja -- Willenborg, Christina -- Bruse, Petra -- Braenne, Ingrid -- Nothen, Markus M -- Hofmann, Per -- Braund, Peter S -- Mergia, Evanthia -- Reinhard, Wibke -- Burgdorf, Christof -- Schreiber, Stefan -- Balmforth, Anthony J -- Hall, Alistair S -- Bertram, Lars -- Steinhagen-Thiessen, Elisabeth -- Li, Shu-Chen -- Marz, Winfried -- Reilly, Muredach -- Kathiresan, Sekar -- McPherson, Ruth -- Walter, Ulrich -- CARDIoGRAM -- Ott, Jurg -- Samani, Nilesh J -- Strom, Tim M -- Meitinger, Thomas -- Hengstenberg, Christian -- Schunkert, Heribert -- British Heart Foundation/United Kingdom -- England -- Nature. 2013 Dec 19;504(7480):432-6. doi: 10.1038/nature12722. Epub 2013 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [3]. ; 1] Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany [2] Department of Genetic Epidemiology, University of Regensburg, 93053 Regensburg, Germany [3]. ; 1] Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany [2] Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S937 Paris, France [3]. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany [3]. ; Department of Pharmacology and Toxicology, Ruhr-University Bochum, 44801 Bochum, Germany. ; 1] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [2] Institut fur Physiologie, Universitat zu Lubeck, 23562 Lubeck, Germany. ; 1] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany [2] Institut fur Humangenetik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Institut fur Humangenetik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany. ; Klinik und Poliklinik fur Innere Medizin II, Universitatsklinikum Regensburg, 93053 Regensburg, Germany. ; 1] Institute of Human Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany [2] Institute of Human Genetics, Technische Universitat Munchen, 81675 Munchen, Germany. ; 1] Institut fur Integrative und Experimentelle Genomik, Universitat zu Lubeck, 23562 Lubeck, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lubeck/Kiel, 23562 Lubeck, Germany. ; 1] Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany [2] Department of Genomics, Research Center Life & Brain, University of Bonn, 53127 Bonn, Germany. ; 1] Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany [2] Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, 4003 Basel, Switzerland. ; 1] Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK [2] Leicester National Institute for Health Research Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester LE1 7RH, UK. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany. ; Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany. ; Institute of Clinical Molecular Biology, Christian-Albrecht-Universitat, 24105 Kiel, Germany. ; Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK. ; Division of Cardiovascular and Neuronal Remodelling, Multidisciplinary Cardiovascular Research Centre, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK. ; Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. ; Charite Research Group on Geriatrics, Charite-Universitatsmedizin, 10117 Berlin, Germany. ; 1] Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany [2] Department of Psychology, TU Dresden, 01062 Dresden, Germany. ; 1] Synlab Academy and Business Development, synlab Services GmbH, 68165 Mannheim, Germany [2] Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria [3] Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany. ; The Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; 1] Cardiovascular Research Center and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts 02215, USA [2] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02215, USA [3] Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02215, USA. ; University of Ottawa, Heart Institute, Ottawa, Ontario K1Y 4W7, Canada. ; 1] Centrum fur Thrombose und Hamostase (CTH), Universitatsmedizin Mainz, 55131 Mainz, Germany [2] German Centre for Cardiovascular Research (DZHK), partner site RheinMain, 55131 Mainz, Germany. ; 1] Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, China [2] Laboratory of Statistical Genetics, Rockefeller University, New York 10065, USA. ; 1] Deutsches Herzzentrum Munchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitat Munchen, 80636 Munchen, Germany [2] Institute of Human Genetics, Helmholtz Zentrum Munchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany [3] Institute of Human Genetics, Technische Universitat Munchen, 81675 Munchen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24213632" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chaperonin Containing TCP-1/genetics/metabolism ; Cyclic GMP/metabolism ; Disease Susceptibility/*metabolism ; Exome/genetics ; Female ; Genetic Predisposition to Disease ; Guanylate Cyclase/deficiency/genetics/metabolism ; HEK293 Cells ; Humans ; Male ; Mice ; Mutation/genetics ; Myocardial Infarction/genetics/*metabolism/physiopathology ; Nitric Oxide/*metabolism ; Pedigree ; Platelet Activation ; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/metabolism ; Reproducibility of Results ; *Signal Transduction ; Solubility ; Thrombosis/metabolism ; Vasodilation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-07-22
    Description: In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walz, Susanne -- Lorenzin, Francesca -- Morton, Jennifer -- Wiese, Katrin E -- von Eyss, Bjorn -- Herold, Steffi -- Rycak, Lukas -- Dumay-Odelot, Helene -- Karim, Saadia -- Bartkuhn, Marek -- Roels, Frederik -- Wustefeld, Torsten -- Fischer, Matthias -- Teichmann, Martin -- Zender, Lars -- Wei, Chia-Lin -- Sansom, Owen -- Wolf, Elmar -- Eilers, Martin -- England -- Nature. 2014 Jul 24;511(7510):483-7. doi: 10.1038/nature13473. Epub 2014 Jul 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany [2]. ; CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK. ; Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany. ; Institute for Molecular Biology and Tumor Research (IMT), Emil-Mannkopff-Str.2, 35033 Marburg, Germany. ; University of Bordeaux, IECB, ARNA laboratory, Equipe Labellisee Contre le Cancer, 33600 Pessac, France. ; Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35390 Giessen, Germany. ; University Children's Hospital of Cologne, and Cologne Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany. ; University Hospital Tubingen, Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, Otfried-Mueller-Strasse 10, 72076 Tubingen, Germany. ; 1] University Hospital Tubingen, Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, Otfried-Mueller-Strasse 10, 72076 Tubingen, Germany [2] Translational Gastrointestinal Oncology Group within the German Center for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany. ; DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA. ; 1] Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany [2] Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Wurzburg, Josef-Schneider-Str.2, 97080 Wurzburg, Germany [3]. ; 1] Theodor Boveri Institute, Biocenter, University of Wurzburg, Am Hubland, 97074 Wurzburg, Germany [2] Comprehensive Cancer Center Mainfranken, University of Wurzburg, Josef-Schneider-Str. 6, 97080 Wurzburg, Germany [3].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043018" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cell Line, Tumor ; Down-Regulation/*genetics ; E-Box Elements/genetics ; Gene Expression Regulation, Neoplastic/*genetics ; Genes, myc/*genetics ; Humans ; Kruppel-Like Transcription Factors/metabolism ; Mice ; Neoplasms/*genetics ; Nuclear Proteins/metabolism ; Promoter Regions, Genetic/genetics ; Protein Inhibitors of Activated STAT/metabolism ; Proto-Oncogene Proteins c-myc/genetics/metabolism ; RNA Polymerase II/metabolism ; *Transcriptome ; Up-Regulation/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1978-11-24
    Description: When whole human blood is subjected to viscometric flow, individual red cells are seen to be elongated and oriented in the shear field. In addition, a tank tread-like motion of the membrane around the cell content occurs. In dilute suspensions of erythrocytes in viscous media, the same behavior is better observed and can also be measured quantitatively.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fischer, T M -- Stohr-Lissen, M -- Schmid-Schonbein, H -- New York, N.Y. -- Science. 1978 Nov 24;202(4370):894-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/715448" target="_blank"〉PubMed〈/a〉
    Keywords: *Blood Viscosity ; Erythrocyte Membrane/*physiology ; Erythrocytes/*physiology/ultrastructure ; Humans ; Rheology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-16
    Description: Ablation effects on transition Reynolds number of hypersonic boundary layer on slender cones
    Keywords: FLUID MECHANICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-16
    Description: The presented paper shows the effect of local Mach number on the turbulent disturbance spreading angle relative to the wall and on lateral disturbance spreading angles. Almost all the disturbances angles relative to the wall were determined from investigations where hot-wire contours or hot-film surveys of a 'laminar' boundary layer were obtained. Lateral disturbance spreading angles were obtained from investigations of various conditions including turbulent bursts, reported observations of transverse contamination, and observed transitional flow. It is noted that the disturbance spreading angle relative to the wall seems to remain essentially invariant with Mach number, while the lateral spreading angle decreases sharply with increasing Mach number up to about 6. The good agreement between lateral disturbance spreading angle data and data for the variation of turbulent jet spreading angle with Mach number implies that in the lateral dimension, turbulence in a boundary layer may develop essentially free of wall constraints (similar to a free shear layer).
    Keywords: FLUID MECHANICS
    Type: AIAA Journal; 10; July 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-27
    Description: Nozzle wall hypersonic turbulent boundary layers at free stream Mach number using pitot, hot wire, and wall fluctuation and static pressure measurements
    Keywords: FLUID MECHANICS
    Type: AIAA PAPER 70-746
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: Wind tunnel investigation of laminar, transitional, and turbulent boundary layer profiles on wedge at hypersonic speed to confirm theoretical analysis
    Keywords: FLUID MECHANICS
    Type: NASA-TN-D-6462 , L-7776
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: Reynolds number and nose bluntness effects on boundary layer transition for hypersonic half angle cone
    Keywords: FLUID MECHANICS
    Type: NASA-TM-X-61906
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Four main concepts which have significantly reduced skin friction in experimental studies are discussed; suction, gaseous injection, particle additives, and compliant wall. It is considered possible that each of these concepts could be developed and applied in viable skin friction reduction systems for aircraft application. Problem areas with each concept are discussed, and recommendations for future studies are made.
    Keywords: FLUID MECHANICS
    Type: NASA-TM-X-2894 , L-9119
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...