ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-05-24
    Description: Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Ruff, S -- Gellert, R -- Morris, R V -- Ming, D W -- Crumpler, L -- Farmer, J D -- Marais, D J Des -- Yen, A -- McLennan, S M -- Calvin, W -- Bell, J F 3rd -- Clark, B C -- Wang, A -- McCoy, T J -- Schmidt, M E -- de Souza, P A Jr -- New York, N.Y. -- Science. 2008 May 23;320(5879):1063-7. doi: 10.1126/science.1155429.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497295" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Hot Temperature ; Hydrogen-Ion Concentration ; *Mars ; *Silicon Dioxide ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-04
    Description: The Wet Chemistry Laboratory on the Phoenix Mars Lander performed aqueous chemical analyses of martian soil from the polygon-patterned northern plains of the Vastitas Borealis. The solutions contained approximately 10 mM of dissolved salts with 0.4 to 0.6% perchlorate (ClO4) by mass leached from each sample. The remaining anions included small concentrations of chloride, bicarbonate, and possibly sulfate. Cations were dominated by Mg2+ and Na+, with small contributions from K+ and Ca2+. A moderately alkaline pH of 7.7 +/- 0.5 was measured, consistent with a carbonate-buffered solution. Samples analyzed from the surface and the excavated boundary of the approximately 5-centimeter-deep ice table showed no significant difference in soluble chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hecht, M H -- Kounaves, S P -- Quinn, R C -- West, S J -- Young, S M M -- Ming, D W -- Catling, D C -- Clark, B C -- Boynton, W V -- Hoffman, J -- Deflores, L P -- Gospodinova, K -- Kapit, J -- Smith, P H -- New York, N.Y. -- Science. 2009 Jul 3;325(5936):64-7. doi: 10.1126/science.1172466.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA. michael.h.hecht@jpl.nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19574385" target="_blank"〉PubMed〈/a〉
    Keywords: *Anions ; *Cations ; Chemical Phenomena ; Extraterrestrial Environment ; Hydrogen-Ion Concentration ; *Mars ; Oxidation-Reduction ; *Perchlorates ; Solubility ; Spacecraft ; Temperature ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-23
    Description: The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Knoll, A H -- Arvidson, R E -- Ashley, J W -- Bell, J F 3rd -- Calvin, W M -- Christensen, P R -- Clark, B C -- Cohen, B A -- de Souza, P A Jr -- Edgar, L -- Farrand, W H -- Fleischer, I -- Gellert, R -- Golombek, M P -- Grant, J -- Grotzinger, J -- Hayes, A -- Herkenhoff, K E -- Johnson, J R -- Jolliff, B -- Klingelhofer, G -- Knudson, A -- Li, R -- McCoy, T J -- McLennan, S M -- Ming, D W -- Mittlefehldt, D W -- Morris, R V -- Rice, J W Jr -- Schroder, C -- Sullivan, R J -- Yen, A -- Yingst, R A -- New York, N.Y. -- Science. 2009 May 22;324(5930):1058-61. doi: 10.1126/science.1170355.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19461001" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; *Mars ; Spacecraft ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-06-05
    Description: Decades of speculation about a warmer, wetter Mars climate in the planet's first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, Richard V -- Ruff, Steven W -- Gellert, Ralf -- Ming, Douglas W -- Arvidson, Raymond E -- Clark, Benton C -- Golden, D C -- Siebach, Kirsten -- Klingelhofer, Gostar -- Schroder, Christian -- Fleischer, Iris -- Yen, Albert S -- Squyres, Steven W -- New York, N.Y. -- Science. 2010 Jul 23;329(5990):421-4. doi: 10.1126/science.1189667. Epub 2010 Jun 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Johnson Space Center, Houston, TX 77058, USA. richard.v.morris@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522738" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Carbon Dioxide ; *Carbonates/chemistry ; Climate ; Extraterrestrial Environment ; Ferrous Compounds ; Magnesium ; *Mars ; Meteoroids ; Spacecraft ; Temperature ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-08-07
    Description: Mossbauer spectra measured on Mars by the Spirit rover during the primary mission are characterized by two ferrous iron doublets (olivine and probably pyroxene) and a ferric iron doublet (tentatively associated to nanophase ferric iron oxide). Two sextets resulting from nonstoichiometric magnetite are also present, except for a coating on the rock Mazatzal, where a hematite-like sextet is present. Greater proportions of ferric-bearing phases are associated with undisturbed soils and rock surfaces as compared to fresh rock surfaces exposed by grinding. The ubiquitous presence of olivine in soil suggests that physical rather than chemical weathering processes currently dominate at Gusev crater.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morris, R V -- Klingelhofer, G -- Bernhardt, B -- Schroder, C -- Rodionov, D S -- De Souza, P A Jr -- Yen, A -- Gellert, R -- Evlanov, E N -- Foh, J -- Kankeleit, E -- Gutlich, P -- Ming, D W -- Renz, F -- Wdowiak, T -- Squyres, S W -- Arvidson, R E -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):833-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NASA Johnson Space Center, Houston, TX, USA. richard.v.morris@nasa.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297666" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Ferrosoferric Oxide ; Geologic Sediments ; Iron ; *Iron Compounds ; Magnesium Compounds ; *Mars ; *Minerals ; Oxides ; Silicates ; Spectroscopy, Mossbauer
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-04
    Description: The Alpha Particle X-ray Spectrometer on the Opportunity rover determined major and minor elements of soils and rocks in Meridiani Planum. Chemical compositions differentiate between basaltic rocks, evaporite-rich rocks, basaltic soils, and hematite-rich soils. Although soils are compositionally similar to those at previous landing sites, differences in iron and some minor element concentrations signify the addition of local components. Rocky outcrops are rich in sulfur and variably enriched in bromine relative to chlorine. The interaction with water in the past is indicated by the chemical features in rocks and soils at this site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rieder, R -- Gellert, R -- Anderson, R C -- Bruckner, J -- Clark, B C -- Dreibus, G -- Economou, T -- Klingelhofer, G -- Lugmair, G W -- Ming, D W -- Squyres, S W -- d'Uston, C -- Wanke, H -- Yen, A -- Zipfel, J -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1746-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Chemie, J. J. Becher-Weg 27, D-55128 Mainz, Germany. rieder@mpch-mainz.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576611" target="_blank"〉PubMed〈/a〉
    Keywords: Alpha Particles ; Bromine ; Chlorine ; Elements ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; Iron ; Magnesium ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectrometry, X-Ray Emission ; Sulfates ; Sulfur ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-04
    Description: Mossbauer spectra measured by the Opportunity rover revealed four mineralogical components in Meridiani Planum at Eagle crater: jarosite- and hematite-rich outcrop, hematite-rich soil, olivine-bearing basaltic soil, and a pyroxene-bearing basaltic rock (Bounce rock). Spherules, interpreted to be concretions, are hematite-rich and dispersed throughout the outcrop. Hematitic soils both within and outside Eagle crater are dominated by spherules and their fragments. Olivine-bearing basaltic soil is present throughout the region. Bounce rock is probably an impact erratic. Because jarosite is a hydroxide sulfate mineral, its presence at Meridiani Planum is mineralogical evidence for aqueous processes on Mars, probably under acid-sulfate conditions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Klingelhofer, G -- Morris, R V -- Bernhardt, B -- Schroder, C -- Rodionov, D S -- de Souza, P A Jr -- Yen, A -- Gellert, R -- Evlanov, E N -- Zubkov, B -- Foh, J -- Bonnes, U -- Kankeleit, E -- Gutlich, P -- Ming, D W -- Renz, F -- Wdowiak, T -- Squyres, S W -- Arvidson, R E -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1740-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Anorganische und Analytische Chemie, Johannes Gutenberg-Universitat, Staudinger Weg 9, D-55128 Mainz, Germany. phil.christensen@asu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576610" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; *Ferric Compounds ; Geologic Sediments ; Iron Compounds ; Magnesium Compounds ; *Mars ; Minerals ; Silicates ; Spacecraft ; Spectroscopy, Mossbauer ; *Sulfates ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-08-07
    Description: The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grant, J A -- Arvidson, R -- Bell, J F 3rd -- Cabrol, N A -- Carr, M H -- Christensen, P -- Crumpler, L -- Des Marais, D J -- Ehlmann, B L -- Farmer, J -- Golombek, M -- Grant, F D -- Greeley, R -- Herkenhoff, K -- Li, R -- McSween, H Y -- Ming, D W -- Moersch, J -- Rice, J W Jr -- Ruff, S -- Richter, L -- Squyres, S -- Sullivan, R -- Weitz, C -- New York, N.Y. -- Science. 2004 Aug 6;305(5685):807-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA. grantj@nasm.si.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15297659" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Volcanic Eruptions ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-04
    Description: The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Squyres, S W -- Arvidson, R E -- Bell, J F 3rd -- Bruckner, J -- Cabrol, N A -- Calvin, W -- Carr, M H -- Christensen, P R -- Clark, B C -- Crumpler, L -- Marais, D J Des -- d'Uston, C -- Economou, T -- Farmer, J -- Farrand, W -- Folkner, W -- Golombek, M -- Gorevan, S -- Grant, J A -- Greeley, R -- Grotzinger, J -- Haskin, L -- Herkenhoff, K E -- Hviid, S -- Johnson, J -- Klingelhofer, G -- Knoll, A H -- Landis, G -- Lemmon, M -- Li, R -- Madsen, M B -- Malin, M C -- McLennan, S M -- McSween, H Y -- Ming, D W -- Moersch, J -- Morris, R V -- Parker, T -- Rice, J W Jr -- Richter, L -- Rieder, R -- Sims, M -- Smith, M -- Smith, P -- Soderblom, L A -- Sullivan, R -- Wanke, H -- Wdowiak, T -- Wolff, M -- Yen, A -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1698-703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Astronomy, Space Sciences Building, Cornell University, Ithaca, NY 14853, USA. squyres@astro.cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576602" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Evolution, Planetary ; Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; Water ; Wind
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-04
    Description: The Microscopic Imager on the Opportunity rover analyzed textures of soils and rocks at Meridiani Planum at a scale of 31 micrometers per pixel. The uppermost millimeter of some soils is weakly cemented, whereas other soils show little evidence of cohesion. Rock outcrops are laminated on a millimeter scale; image mosaics of cross-stratification suggest that some sediments were deposited by flowing water. Vugs in some outcrop faces are probably molds formed by dissolution of relatively soluble minerals during diagenesis. Microscopic images support the hypothesis that hematite-rich spherules observed in outcrops and soils also formed diagenetically as concretions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Herkenhoff, K E -- Squyres, S W -- Arvidson, R -- Bass, D S -- Bell, J F 3rd -- Bertelsen, P -- Ehlmann, B L -- Farrand, W -- Gaddis, L -- Greeley, R -- Grotzinger, J -- Hayes, A G -- Hviid, S F -- Johnson, J R -- Jolliff, B -- Kinch, K M -- Knoll, A H -- Madsen, M B -- Maki, J N -- McLennan, S M -- McSween, H Y -- Ming, D W -- Rice, J W Jr -- Richter, L -- Sims, M -- Smith, P H -- Soderblom, L A -- Spanovich, N -- Sullivan, R -- Thompson, S -- Wdowiak, T -- Weitz, C -- Whelley, P -- New York, N.Y. -- Science. 2004 Dec 3;306(5702):1727-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Geological Survey Astrogeology Team, Flagstaff, AZ 86001, USA. kherkenhoff@usgs.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15576607" target="_blank"〉PubMed〈/a〉
    Keywords: Extraterrestrial Environment ; Ferric Compounds ; Geologic Sediments ; *Mars ; Minerals ; Silicates ; Spacecraft ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...