ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Extractable micronutrients Fe Mn Zn Cu  (2)
  • 1
    ISSN: 1573-5036
    Keywords: Blueberries ; Extractable micronutrients Fe Mn Zn Cu ; Extracting agents ; CaCl2 ; HCl DTPA EDTA ; Peat ; pH
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Levels of extractable micronutrients in a peat and the growth and nutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L cv. Blueray) were studied in a greenhouse experiment in response to liming and two rates of addition of Fe, Mn, Zn and Cu. Levels of extractable micronutrients showed different trends with liming depending upon the extractant used and the element being considered. Levels of 0.05M CaCl2-extractable Fe, Mn and Zn decreased as the pH was raised whilst those of Cu first decreased and then increased again. There was a general decline in 0.1M HCl-extractable Fe, Mn and Cu with increasing pH but levels of Zn were not greatly affected. Levels of 0.005M DTPA extractable Fe, Mn Zn and Cu generally declined but those extractable with 0.04M EDTA were either unaffected or increased as the pH was raised. Levels of CaCl2-extractable Mn and Zn were the same order of magnitude as those extractable with HCl, DTPA and EDTA. In contrast, the latter reagents extracted considerably more Fe and Cu than did CaCl2. Dry matter yields of plants were increased as the pH was raised from 3.9 to 4.3 but then decreased markedly as the pH was raised further to 6.7. With increasing pH, concentrations of plant Fe generally increased those of Mn were decreased and those of Zn and Cu were not greatly affected except for a marked decline in plant Cu at pH 6.7.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Acidification ; Blueberries ; Extractable micronutrients Fe Mn Zn Cu ; Extracting agents CaCl2 ; HCl DTPA EDTA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of soil acidification and micronutrient addition on levels of extractable Fe, Mn, Zn and Cu in a soil, and on the growth and micronutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L. cv. Blueray) was investigated in a greenhouse study. Levels of 0.05M CaCl2-extractable Fe, Mn, Zn and Cu increased as the pH was lowered from 7.0 to 3.8. However, the solubility (CaCl2-extractability) of Fe and Cu was considerably less pH-dependent than that of Mn and Zn. With the exception of HCl-and DTPA-extractable Mn, micronutrients extractable with 0.1M HCl, 0.005M DTPA and 0.04M EDTA were unaffected or raised only slightly as the pH was lowered from 6.0 to 3.8. Quantities of Mn and Zn extractable with CaCl2 were similar in magnitude to those extractable with HCl, DTPA and EDTA whilst, in contrast, the latter reagents extracted considerably more Cu and Fe than did CaCl2. A fractionation of soil Zn and Cu revealed that soil acidification resulted in an increase in the CaCl2- and pyrophosphate-extractable fractions and a smaller decrease in the oxalate-extractable fraction. Plant dry matter production increased consistently when the soil pH was lowered from 7.0 to 4.6 but there was a slight decline in dry matter as the pH was lowered to 3.8. Micronutrient additions had no influence on plant biomass although plant uptake was increased. As the pH was lowered, concentrations of plant Fe first decreased and then increased whilst those of Mn, and to a lesser extent Zn and Cu, increased markedly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...