ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
    Keywords: Exobiology
    Type: Astrobiology (ISSN 1531-1074); Volume 3; 2; 219-35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-15
    Description: Here we review how environmental context can be used to interpret whether O2 is a biosignature in extrasolar planetary observations. This paper builds on the overview of current biosignature research discussed in Schwieterman et al. (2017), and provides an in-depth, interdisciplinary example of biosignature identification and observation that serves as a basis for the development of the general framework for biosignature assessment described in Catling et al., (2017). O2 is a potentially strong biosignature that was originally thought to be an unambiguous indicator for life at high-abundance. In exploring O2 as a biosignature, we describe the coevolution of life with the early Earth's environment, and how the interplay of sources and sinks in the planetary environment may have resulted in suppression of O2 release into the atmosphere for several billion years, a false negative for biologically generated O2. False positives may also be possible, with recent research showing potential mechanisms in exoplanet environments that may generate relatively high abundances of atmospheric O2 without a biosphere being present. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. Similarly our ability to interpret O2 observed in an exoplanetary atmosphere is also crucially dependent on environmental context to rule out false positive mechanisms. We describe future photometric, spectroscopic and time-dependent observations of O2 and the planetary environment that could increase our confidence that any observed O2 is a biosignature, and help discriminate it from potential false positives. The rich, interdisciplinary study of O2 illustrates how a synthesis of our understanding of life's evolution and the early Earth, scientific computer modeling of star-planet interactions and predictive observations can enhance our understanding of biosignatures and guide and inform the development of next-generation planet detection and characterization missions. By observing and understanding O2 in its planetary context we can increase our confidence in the remote detection of life, and provide a model for biosignature development for other proposed biosignatures.
    Keywords: Exobiology
    Type: GSFC-E-DAA-TN58082 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 18; 6; 630-662
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be used to simulate Earth s time dependent brightness and spectral properties for wavelengths from the far ultraviolet to the far infrared.brightness
    Keywords: Exobiology
    Type: GSFC.JA.5051.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...