ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: There is excellent evidence that a dynamical instability in the early solar system led to gravitational interactions between the giant planets and trans-Neptunian objects (TNOs). Giant planetary migration triggered by the instability dispersed a disk of primordial TNOs and created a number of small body reservoirs (e.g. the Kuiper Belt, scattered disk, irregular satellites, and the Jupiter/Neptune Trojan populations). It also injected numerous bodies into the main asteroid belt, where modeling shows they can successfully reproduce the observed P and D-type asteroid populations. During the injection era and after implantation, some of these main belt TNOs would have collided with S-class asteroids. Some of this material may have survived as a component of asteroid regolith breccias. Thus, we have been searching for evidence of these impact events in the form of carbonaceous xenoliths in brecciated ordinary chondrites. These xenoliths would have experienced a wide range of impact velocities, and therefore we should expect to see everything between relatively unaltered material to completely shock-melted lithologies. This material might also be different from the carbonaceous chondrites that represent standard C-complex asteroids. A goal of this research is to define useful criteria for distinguishing between these two classes of materials, including O, Cr, N and C isotopes, petrographic characteristics, and chronology.
    Keywords: Lunar and Planetary Science and Exploration; Geosciences (General)
    Type: JSC-E-DAA-TN56751 , Annual Meeting of The Meteoritical Society; Jul 22, 2018 - Jul 27, 2018; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-27
    Description: Zag and Monahans (1998) are H chondrite regolith breccias that contain 4.5 GY old halite crystals which in turn contain abundant inclusions of aqueous fluids, solids and organics. We have previously proposed that these halites originated on a hydrovolcanically-active C class asteroid, probably Ceres, or a trans-neptunian object (TNO - or P- or D-class asteroid) injected into the inner solar system during giant planet migration. We have begun a detailed analysis of organics and other solids trapped within the halite, which we hypothesize sample the mantle of the halite parent object, and are examining a halite-bearing C1 chondrite clast also found in Zag, which is similar to the solids in the halite. These investigations will reveal the water-rock interactions on the hydrovolcanically-active parent world.
    Keywords: Lunar and Planetary Science and Exploration; Geosciences (General)
    Type: LPI Paper No. 6041 , LPI Contrib. No. 2085 , JSC-E-DAA-TN56316
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: The Mars Science Laboratory mission has comprehensively interrogated the surface environment of Mars as it explores Gale Crater. Both chemical and physical attributes of the present environment have been measured over the course of the mission, enabling us to compare the present state of the martian surface with the environmental requirements of prokaryotic microbes. While this approach does not exclude the possibility of martian life that may have evolved to adapt to the present conditions, it is advantageous in that it allows us to evaluate environmental requirements of known life and also provide insight into the likelihood of forward contamination by Earth organisms with the comparison of their environmental requirements with the measured attributes of the environment at Gale Crater. We have already modeled a paleoenvironment with high habitability potential (HP) based upon chemistry, mineralogy and other geological evidence such as sedimentary structures and larger scale geomorphology [1]. In this report, we turn our attention to the present HP of the Yellowknife Bay area, including the importance of the physical environmental metrics such as atmospheric pressure, air and ground temperature, ionizing radiation, wind speed and direction, slope, etc.
    Keywords: Exobiology; Lunar and Planetary Science and Exploration
    Type: JSC-CN-31333 , International Conference on Mars; Jul 14, 2014 - Jul 18, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 +/- 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 T 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.
    Keywords: Lunar and Planetary Science and Exploration; Geosciences (General)
    Type: GSFC-E-DAA-TN21533 , Science; 343; 6169
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...