ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-25
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lamb, D. C., Goldstone, J. V., Zhao, B., Lei, L., Mullins, J. G. L., Allen, M. J., Kelly, S. L., & Stegeman, J. J. Characterization of a virally encoded flavodoxin that can drive bacterial cytochrome P450 monooxygenase activity. Biomolecules, 12(8), (2022): 1107, https://doi.org/10.3390/biom12081107.
    Description: Flavodoxins are small electron transport proteins that are involved in a myriad of photosynthetic and non-photosynthetic metabolic pathways in Bacteria (including cyanobacteria), Archaea and some algae. The sequenced genome of 0305φ8-36, a large bacteriophage that infects the soil bacterium Bacillus thuringiensis, was predicted to encode a putative flavodoxin redox protein. Here we confirm that 0305φ8-36 phage encodes a FMN-containing flavodoxin polypeptide and we report the expression, purification and enzymatic characterization of the recombinant protein. Purified 0305φ8-36 flavodoxin has near-identical spectral properties to control, purified Escherichia coli flavodoxin. Using in vitro assays we show that 0305φ8-36 flavodoxin can be reconstituted with E. coli flavodoxin reductase and support regio- and stereospecific cytochrome P450 CYP170A1 allyl-oxidation of epi-isozizaene to the sesquiterpene antibiotic product albaflavenone, found in the soil bacterium Streptomyces coelicolor. In vivo, 0305φ8-36 flavodoxin is predicted to mediate the 2-electron reduction of the β subunit of phage-encoded ribonucleotide reductase to catalyse the conversion of ribonucleotides to deoxyribonucleotides during viral replication. Our results demonstrate that this phage flavodoxin has the potential to manipulate and drive bacterial P450 cellular metabolism, which may affect both the host biological fitness and the communal microbiome. Such a scenario may also be applicable in other viral-host symbiotic/parasitic relationships.
    Description: The study was supported by the National Institutes of Health grant 5U41HG003345 (J.V.G.), by the Woods Hole Center for Oceans and Human Health, NIH P01 ES021923 and NSF OCE-1314642 (J.J.S.), and by a Fulbright Scholarship (to D.C.L.). Funding at Swansea University supported by the European Regional Development Fund/Welsh European Funding Office via the BEACON project (S.L.K).
    Keywords: Flavodoxin ; Virus/phage ; Cytochrome P450 ; Evolution ; Bacteria
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-12
    Description: Facile and scalable fabrication of highly dense and high quality graphene films and articles is extremely attractive for a range of electronic and mechanical applications. Pristine, high quality graphene with its inherent impermeability poses challenges in fabricating dense films and thick parts with high electrical conductivity due to the difficulty in removing trapped air and/or solvents used in various fabrication methods. To overcome this deficiency, nano-holes were intentionally created in pristine graphene (holey graphene) with an average diameter of approximately 15 nm. The holes serve as pathways for the rapid removal of gases or liquids and enable the fabrication of dense holey graphene nanostructures. Subsequently, a high temperature process is applied to effectively repair the nano-holes and recover the high quality graphene conjugated network. Through the creation and repair of the nano-holes, dense graphene articles were created that exhibited an ultrahigh conductivity of 2209 S/cm and a high carrier mobility of 673 cm2V-1s-1. This unique processing methodology enables the facile and scalable fabrication of high quality graphene constructs for a variety of applications.
    Keywords: Nonmetallic Materials
    Type: NF1676L-30050 , Materials Today (ISSN 1369-7021); 24; 26-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...