ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Euler Equations  (1)
  • Subcritical and supercritical flows  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 8 (1988), S. 1095-1105 
    ISSN: 0271-2091
    Keywords: Euler Equations ; Riemann Solver ; Generalized Co-ordinates ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite difference scheme based on flux difference splitting is presented for the solution of the two-dimensional Euler equations of gas dynamics in a generalized co-ordinate system. The scheme is based on numerical characteristic decomposition and solves locally linearized Riemann problems using upwind differencing. The decomposition is for a generalized co-ordinate system and a convex equation of state. This ensures good shock-capturing properties when incorporated with operator splitting and the advantage of using body-fitted co-ordinates. The resulting scheme is applied to supersonic flow of real air' past a circular cylinder.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 16 (1993), S. 629-654 
    ISSN: 0271-2091
    Keywords: Shallow-water equations ; Subcritical and supercritical flows ; Open channels ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow-water equations in open channels, together with an extension to two-dimensional flows. A linearized problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearized problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a one-dimensional dam-break problem, and to a problem of flow in a river whose geometry induces a region of supercritical flow. The scheme is also applied to a two-dimensional dam-break problem. The numerical results are compared with the exact solution, or other numerical results, where available.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...